Kazan Meslek Yüksekokulu / Kazan Vocational School

Permanent URI for this collectionhttps://hdl.handle.net/11727/2077

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Comparison Of Propionibacterium Genomes: CRISPR-Cas Systems, Phage/Plasmid Diversity, And Insertion Sequences
    (2022) Kahraman-Ilikkan, Ozge; https://orcid.org/0000-0001-5843-6868; 35763226; Q-9641-2019
    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems constitute the adaptive immune system in prokaryotes that provide resistance against invasive genetic elements. The genus Propionibacterium comprises gram-positive, facultative anaerobe, non-spore-forming bacteria, and is the source of some B group vitamins such as B12 as well as bacteriocins. Some of the selected species of the genus Propionibacterium spp. were reclassified into the three genera in 2016 (Acidipropionibacterium spp., Pseudopropionibacterium spp., Cutibacterium spp.). Therefore, this study compared CRISPR/Cas systems, Cas 1 and repeat sequences phylogeny, phage/plasmid surveys as well as insertion sequences of new genera members. In this study, a total of 34 genomes of 13 species were observed with a bioinformatic approach. CRISPR-Cas + + and CRISPRDetect were used to detect CRISPR/Cas systems, direct repeats, and spacers. 39 CRISPR-Cas systems were detected. Type I-E, Type I-U, and one incomplete III-B CRISPR-Cas subtypes were identified. Most of the strains had Cas1/Cas4 fusion proteins. Pseudopropionibacterium propionicum strains had two types I-U and one of the CRISPR loci had csx17 cas genes. Common phage invaders were Propionibacterium phage E6, G4, E1, Anatole, and Doucette. The BLSM62 similarity score of all Cas1 sequences was 48.4% while the pairwise identity of repeat sequences was 48.7%. Common insertion sequences were ISL3, IS3, IS30. The diversity analysis of the CRISPR/Cas system in the genus Propionibacterium provided a new perspective for determining the role of the CRISPR-Cas system in the evolution of new genera.
  • Item
    Analysis of Probiotic Bacteria Genomes: Comparison of CRISPR/Cas Systems and Spacer Acquisition Diversity
    (2021) Ilikkan, Ozge Kahraman; 0000-0001-5843-6868; 35068602; Q-9641-2019
    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes constitute an adaptive (acquired) defense system of bacteria and archaea. Here 72 probiotic bacteria genomes were investigated in terms of the presence of CRISPR/Cas systems and phage/plasmid invaders through spacer analysis. 49 CRISPR/Cas systems were detected within probiotic strains, namely,17 type II-A, 10 type I-C, 8 type I-E, 5 Type I-U (I-G), 4 type III-A, 2 type I-B, 1 type I-A, 1 type IV-B, and 1 type II-C. The predicted target of spacers was determined in 25 strains and consequently, three different spacer and target patterns were revealed. The diversity of CRISPR spacers provides insight and understanding to determine strain-specific invaders of probiotic bacteria as well as their relationships between strains. CRISPR systems were clarified in many studies for genomic characterization. However, recently, endogenous genome editing with CRISPR has provided an approach for various genome editing projects. Thus, in the future, producing strain-specific phage-resistant starter cultures or probiotics by endogenous genome editing methods according to phage/plasmid survey can be utilized for industrial and pharmaceutical applications. Therefore, this study intended a comprehensive investigation of CRISPR systems of probiotic bacteria.