Wos İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11727/4807
Browse
2 results
Search Results
Item Classification of acoustic signals with new feature: Fibonacci space (FSp)(2019) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019In this study, a new feature and feature space (FSp) are introduced by using the approach of Fibonacci series formation. The results are presented as two experimental studies. The nine groups of acoustic signals and pathological human voices are investigated in the first and second experiments, respectively. Convolutional Neural Network (CNN) and Multi-Class Support Vector Machines (M-SVMs) are used to figure out the effect of the proposed feature and its FSp on the classification accuracy. It is observed that the proposed feature and its formed space yield significant results for the discrimination of those signals. Experimental studies show that the classification accuracy of test data is increased by 5.3% when the proposed feature is used with CNN and M-SVMs. In addition, each acoustic group is significantly discriminated in both experimental studies. It is concluded that the proposed feature and its space can be used as a temporal feature for different purposes such as automatic speech recognition, pattern recognition, and emotional voice discrimination etc. (C) 2018 Elsevier Ltd. All rights reserved.Item A hybrid measure for the discrimination of the acoustic signals: Feature matrix (FMx)(2019) Anskishan, Haydar; Inam, Sitki Cagdas; 0000-0002-6240-2545; 0000-0003-0820-9186; AAH-4421-2019We introduce a new feature matrix (FMx) to discriminate the acoustic signals with the help of their hybrid characteristics. The FMx has hybrid domain characteristics consisting of feature values such as distributional area (polygonal area), maximum values of the histogram and fundamental frequency of the difference-difference (d2d) vector. To show the performance of the FMx, three different datasets are used together with quadratic discriminant analysis (QDA), multiclass support vector machines (M-SVMs) and convolutional neural networks (CNN). The simulation results show that FMx provides effective and useful information for the discrimination of the signals into subclasses with the help of ReliefF and forward sequential algorithms. In simulations, the test accuracies with QDA, M-SVMs and CNN were obtained as 94.20%, 100% and 100% respectively. So, the results of the simulations support the effectiveness of the FMx for the acoustic signal classification with three different datasets compared to the previous studies. (C) 2019 Elsevier Ltd. All rights reserved.