Wos İndeksli Yayınlar Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/11727/4807

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Blood pressure prediction from speech recordings
    (2020) Ankishan, Haydar
    The aim of this study is to extract new features to show the relationship between speech recordings and blood pressure (BP). For this purpose, a database consisting of / a / vowels with different BP values under the same room and environment conditions is presented to the literature. Convolutional Neural Networks- Regression (CNN-R), Support Vector Machines- Regression (SVMs-R) and Multi Linear Regression (MLR) are used in this study to predict BP with extracted features. From the experiments, the highest accuracy rates of BP prediction from / a / vowel have been obtained based on Systolic BP values with CNNR. In the study, 89.43 % for MLR, 92.15 % for SVM-R and 93.65 % for CNN-R are obtained when ReliefF has been used. When the root mean square errors (RMSE) are considered, the lowest error value is obtained with CNN-R as RMSE = 0.2355. In conclusion, it can be observed that the proposed feature vector (FVx) shows a relationship between BP and the human voices, and in this direction, it can be used as an FVx in a system that will be developed in order to follow the tension of individuals. (C) 2020 Elsevier Ltd. All rights reserved.
  • Item
    Classification of acoustic signals with new feature: Fibonacci space (FSp)
    (2019) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019
    In this study, a new feature and feature space (FSp) are introduced by using the approach of Fibonacci series formation. The results are presented as two experimental studies. The nine groups of acoustic signals and pathological human voices are investigated in the first and second experiments, respectively. Convolutional Neural Network (CNN) and Multi-Class Support Vector Machines (M-SVMs) are used to figure out the effect of the proposed feature and its FSp on the classification accuracy. It is observed that the proposed feature and its formed space yield significant results for the discrimination of those signals. Experimental studies show that the classification accuracy of test data is increased by 5.3% when the proposed feature is used with CNN and M-SVMs. In addition, each acoustic group is significantly discriminated in both experimental studies. It is concluded that the proposed feature and its space can be used as a temporal feature for different purposes such as automatic speech recognition, pattern recognition, and emotional voice discrimination etc. (C) 2018 Elsevier Ltd. All rights reserved.
  • Item
    Estimation of heartbeat rate from speech recording with hybrid feature vector (HFV)
    (2019) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019
    This paper introduces a new hybrid feature vector for revealing the relationship between human voice and heartbeat rate (HBR). Various samples of the sustained vowel /a/ for different HBR have been extracted from a database which is created for this study. A convolutional neural network (CNN)-Regression (R), support vector machines (SVMs)-Regression (R), and multiple linear regression (MLR) are used as regression models. The experimental results show that the percentage of predictions within an acceptable error margin has been obtained as 98.92% for CNN-R, 98.70% for SVMs-R and 96.88% for MLR when Forward Sequential is used as a feature selection algorithm. The results also reveal that the CNN-R (root mean square error (RMSE) =0.3909) has produced better prediction values in estimating HBR than those produced by SVMs-R (RMSE=0.4277) and MLR (RMSE =0.4449). As a result, it is seen that the extracted hybrid feature vector provides a novel relationship between human voice and HBR. (C) 2019 Elsevier Ltd. All rights reserved.