Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Piskin, E."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Antenna-Type Radiofrequency Generator in Nanoparticle-Mediated Hyperthermia
    (2016) Nasseri, B.; Yilmaz, M.; Turk, M.; Kocum, I. C.; Piskin, E.
    Induction of hyperthermia using nanoparticles with specific magnetic, electrical, acoustic, optical or thermal properties is a potential alternative to conventional thermal ablation in cancer therapy. In this study, for the first time we employed an antenna-type radiofrequency (RF) generator as the energy source and as a proof of concept the effects of nanoparticles of varying structures and sizes, such as super-paramagnetic iron oxide nanoparticles (SPIONs), gold-coated superparamagnetic iron oxide nanoparticles (Au@SPIONs), spherical gold nanoparticles (AuNPs), and gold nanorods (AuNRs) on RF hyperthermia were examined to determine hyperthermia efficiency of the antenna-type RF generator. In preliminary experiments, RF was applied at varying powers to various nanoparticle solutions. In all cases, temperature rises due to exposure of RF radiation to nanoparticles were captured by using an infrared thermal camera. This procedure was applied to in vitro tests of fibroblast (L-929) and breast cancer (MCF-7) cell lines. Cell viability, apoptosis and necrosis were evaluated in both cell lines to comprehensively determine cell toxicity. Due to their particle size and chemical nature, SPIONs, in the case of highest RF power and nanoparticle concentration, resulted in the lowest cell viability and highest levels of apoptosis and necrosis.
  • Thumbnail Image
    Item
    Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals
    (2018) Moghtader, F.; Tomak, A.; Zareie, H.M.; Piskin, E.; 29583029
    This study attemps to develop bacterial detection strategies using bacteriophages and gold nanorods (GNRs) by Raman spectral analysis. Escherichia coli was selected as the target and its specific phage was used as the bioprobe. Target bacteria and phages were propagated/purified by traditional techniques. GNRs were synthesized by using hexadecyltrimethyl ammonium bromide (CTAB) as stabilizer. A two-step detection strategy was applied: Firstly, the target bacteria were interacted with GNRs in suspensions, and then they were dropped onto silica substrates for detection. It was possible to obtain clear surface-enchanced Raman spectroscopy (SERS) peaks of the target bacteria, even without using phages. In the second step, the phage nanoemulsions were droped onto the bacterial–GNRs complexes on those surfaces and time-dependent changes in the Raman spectra were monitored at different time intervals upto 40 min. These results demonstrated that how one can apply phages with plasmonic nanoparticles for detection of pathogenic bacteria very effectively in a quite simple test. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

| Başkent Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber |

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify