Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Okman, Osman Erman"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Fast Target Detection in Radar Images Using Rayleigh Mixtures And Summed Area Tables
    (2018) Nar, Fatih; Okman, Osman Erman; Ozgur, Atilla; Cetin, Mujdat; https://orcid.org/0000-0002-9237-8347; AAD-6546-2019
    As the first step of automatic image interpretation systems, automatic detection of targets should be accurate and fast. For Synthetic Aperture Radar (SAR) images, Constant False Alarm Rate (CFAR) is the most popular framework used for target detection. In CFAR, modeling of the clutter is crucial since the decision threshold is calculated based on this model. In this study, we propose to model the background statistics using a Rayleigh Mixture (RM) model. Such an approach facilitates modeling of complex statistics, including but not limited to those involved in heavy tailed distributions, which are shown to be good fits especially for high resolution SAR images. We also propose an efficient method to evaluate CFAR thresholds according to the proposed model by use of Summed Area Tables (SAT). SAT provides a remarkable efficiency as the Rayleigh distribution is represented by only one parameter that can be estimated using simple moments. Tiling and parallel implementation is also utilized for fast computation of results. The outcome is a highly-accurate, extremely fast, and adaptive target detection approach that can be seamlessly used with a variety of complex SAR scenes. Our experiments compare the proposed approach with existing target detection methods and demonstrate its effectiveness as well as the benefits it provides. (C) 2017 Elsevier Inc. All rights reserved.
  • Thumbnail Image
    Item
    RmSAT-CFAR: Fast and accurate target detection in radar images
    (2018) Nar, Fatih; Okman, Osman Erman; Ozgur, Atilla; Cetin, Mujdat; 0000-0002-9237-8347
    As the first step of automatic image interpretation systems, automatic detection of the targets should be accurate and fast. Constant False Alarm Rate (CFAR) is the most popular target detection framework for Synthetic Aperture Radar (SAR) images. For CFAR, modeling of the clutter is crucial since the decision threshold is calculated based on this model. We have developed a new target detection approach in which clutter is modeled using a Rayleigh mixture model that fits well to a variety of high-resolution SAR imagery. For computational efficiency, we use summed area tables (SAT) for computing background statistics. The resulting approach, called RmSAT-CFAR, is a promising general-purpose SAR target detection tool. This paper describes the open-source software for RmSAT-CFAR. Details of RmSAT-CFAR is published in the study named Fast Target Detection in Radar Images using Rayleigh Mixtures and Summed Area Tables. In addition to Rayleigh mixture and SATs, the software also uses tiling and parallelization to obtain faster and scalable results. This software repository also contains open source implementations for following algorithms: (a) Cell Averaging CFAR (CA-CFAR), (b) Automatic Censored CFAR (AC-CFAR), and (c) Adaptive and Fast CFAR (AAF-CFAR). (C) 2017 The Authors. Published by Elsevier B.V.

| Başkent Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber |

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify