Browsing by Author "Kilic-Kurt, Zuhal"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Cytotoxic and Apoptotic Effects of Novel Pyrrolo[2,3-d]Pyrimidine Derivatives Containing Urea Moieties on Cancer Cell Lines(2018) Kilic-Kurt, Zuhal; Bakar-Ates, Filiz; Karakas, Bahriye; Kutuk, Ozgur; 0000-0003-2809-8946; 0000-0001-9616-4656; 0000-0001-9854-7220; 29866023; AAS-5399-2020; AAG-3843-2020; AFW-5486-2022; AAH-1671-2019Background: Pyrrolo[2,3-d]pyrimidines have been recently reported to have anticancer activities through inhibition of different targets such as, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase, Janus Kinase (JAK), mitotic checkpoint protein kinase (Mps1), carbonic anhydrase, MDM-2. On the other hand, aryl urea moieties which are found in some tyrosine kinase inhibitors such as Sorafenib and Linifanib have aroused recent attention as responsible for anticancer activities. The aims of this paper are to synthesize pyrrolo[2,3-d]pyrimidine derivatives containing urea moiety and evaluate their anti-cancer activity against human lung cancer cell line (A549), prostate cancer cell line (PC3), human colon cancer cell line (SW480) and human breast cancer cell line (MCF-7). Methods: A series of new pyrrolo[2,3-d]pyrimidines containing urea moieties have been synthesized as Scheme 1. In vitro cytotoxicity of target compounds were evaluated against, SW480, PC3, A549 and MCF-7 human cancer cell lines using a MTT assay. In order to evaluate the mechanism of cytotoxic activity of compounds 9e, 10a and 10b, having the best cytotoxic activity, Annexin V binding assay, cell cycle analysis and western blot analysis were performed. Results: Among the target compounds, 10a (IC50 = 0.19 mu M) was found to be the most potent derivative against PC3 cells. Compound 10b and 9e showed the strong cytotoxic activity against MCF-7 and A549 cells with IC50 value of 1.66 mu M and 4.55 mu M, respectively. Flow cytometry data suggest that the cytotoxic activity of the compounds on cancer cells might be mediated by apoptosis revealing a significant increase in the percentage of late apoptotic cells and causing a cell cycle arrest at different stages. Western blot analysis of apoptosis marker demonstrated that these compounds induce apoptosis through the intrinsic pathway. Conclusion: Compound 9e displayed the strongest cytotoxicity against A549 cancer cell line, and induced late apoptosis in A549, as confirmed by cell cycle arrest in G0/G1 phase. In addition, compound 9e reduced expression of the anti-apoptotic protein Bcl-2 and enhanced expression of the pro-apoptotic protein Bax, besides increased caspase-9 and caspase-3, as well as cleavage of PARP levels. These results suggest that compound 9e showed a cytotoxic effect in A549 cells through activation of the mitochondrial apoptotic pathway. Further studies will be undertaken in our laboratory to improve cytotoxic activity of compound 9e and to identify the biological targets of 9e which are responsible for anticancer activity.Item Design, synthesis and in vitro apoptotic mechanism of novel pyrrolopyrimidine derivatives(2019) Kilic-Kurt, Zuhal; Bakar-Ates, Filiz; Aka, Yeliz; Kutuk, Ozgur; 0000-0001-9854-7220; 30458413; AAH-1671-2019In this work we described the synthesis and evaluation of cytotoxic and apoptotic activity of novel pyrrolopyrimidine derivatives against A549, PC3 and MCF-7 cells. Among the synthesized compounds, 6b, 8a, 9a and 7a, 8b displayed the significant cytotoxic activities against A549 and PC3 cells with IC50 value of 0.35, 1.48, 1.56 and 1.04, 1.89 mu M, respectively. It was found that A549 cells were more sensitive to synthesized compounds than PC3 and MCF-7 cells. In order to evaluate the mechanism of cytotoxic activity in A549, compounds 6b, 8a and 9a were selected for further studies. Annexin V binding assay and western blot analysis results revealed that 6b, 8a and 9a induced apoptosis in A549 cells by intrinsic apoptotic pathway through the activation proapoptotic proteins such as Bim, Bax, Bak, Puma and deactivation of anti-apoptotic proteins including Bcl-2, Mcl-1 and Bcl-XL accompanied by the activation of caspase-3, caspase-9 and cleavage of PARP. Also, compounds 6b, 8a and 9a triggered apoptosis in HCT116 wt cells via activation of caspase-3 and caspase-9, but not in HCT116 Bax/Bak KO cells, indicating resistance to 6b, 8a and 9a treatment.Item Novel pyrrolopyrimidine derivatives induce p53-independent apoptosis via the mitochondrial pathway in colon cancer cells(2020) Kilic-Kurt, Zuhal; Aka, Yeliz; Kutuk, Ozgur; 0000-0001-9854-7220; 32866467; AAH-1671-2019A series of novel pyrrolopyrimidine urea derivatives were synthesized and evaluated for their anticancer activity against colon cancer cell lines. Compounds showed the remarkable cytotoxic activity on HCT-116 wt cell line. The most potent compound 4c (IC50 = 0.14 mu M) induced apoptosis in HCT-116 wt and HCT-116 p53-/- cell lines. Otherwise, treatment of HCT-116 BAX-/-BAK-/- cells with compound 4c didn't lead to activation of apoptosis, suggesting that compound 4c induces apoptotic cell death by activating BAX/BAK-dependent pathway. Moreover, while the compound 4c increase the activation of caspase-3 and caspase-9 levels in HCT116 wt and HCT-116 p53-/- cells, caspase-3 or caspase-9 activation was not observed in HCT-116 BAX-/-BAK-/- cells. In addition, compound 4c induced mitochondrial apoptosis in cells grown as oncospheroids, which better mimic the in vivo milieu of tumors. 4c treatment also activated JNK along with inhibition of prosurvival kinases such as Akt and ERK 1/2 in HCT-116 wt and HCT-116 p53 -/- cells as well as in HCT-116 BAX-/-BAK-/- cells. Notably, our results indicated that compound 4c induced mitochondrial apoptosis through activation p53-independent apoptotic signaling pathways.