Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Firengiz, M. Cetin"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Generalized Euler-Seidel Method for Second Order Recurrence Relations
    (2014) Firengiz, M. Cetin; Dil, A.; 0000-0002-9588-0295; C-4040-2012; HNQ-9215-2023
    We obtain identities for the generalized second order recurrence relation by using the generalized Euler-Seidel matrix with parameters x, y. As a consequence, we give some properties and generating functions of well-known special integer sequences.
  • No Thumbnail Available
    Item
    On The Q - Seidel Matrix
    (2014) Firengiz, M. Cetin; Tuglu, Naim; https://orcid.org/0000-0002-9588-0295; HNQ-9215-2023
    Clarke and et. al recently introduced the q-Seidel matrix, and obtained some properties. In this article, we define a different form of q-Seidel matrix by a(n)(k) (x, q) = xq(n+2k-3)a(n)(k-1) (x, q)+an(k-1)(x, q)+a(n+1)(k-1) with k >= 1, n >= 0 for an initial sequence a(n)(0) (x, q) = a(n) (x, q). By using our definition, we obtain several properties of the q-analogues of generalized Fibonacci and Lucas polynomials.
  • No Thumbnail Available
    Item
    Some Identities for Fibonacci and Incomplete Fibonacci p-Numbers via the Symmetric Matrix Method
    (2014) Firengiz, M. Cetin; Tasci, Dursun; Tuglu, Naim; 0000-0002-9588-0295; HNQ-9215-2023
    We obtain some new formulas for the Fibonacci and Lucas p-numbers, by using the symmetric infinite matrix method. We also give some results for the Fibonacci and Lucas p-numbers by means of the binomial inverse pairing.

| Başkent Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber |

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify