Browsing by Author "Demircioglu, Erdem"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Novel Approach for Estimating Heat Transfer Coefficients of Ethylene Glycol-Water Mixtures(2014) Bulut, Murat; Ankishan, Haydar; Demircioglu, Erdem; Ari, Seckin; Sengul, Orhan; https://orcid.org/0000-0002-6240-2545; AAH-4421-2019Ethylene glycol-water mixtures (EGWM) are vital for cooling engines in automotive industry. Scarce information is available in the literature for estimating the heat transfer coefficients (HTC) of EGWM using knowledge-based estimation techniques such as adaptive neuro-fuzzy inference systems (ANFIS) and artificial neural networks (ANN) which offer nonlinear input-output mapping. In this paper, the supervised learning methods of ANFIS and ANN are exploited for estimating the experimentally determined HTC. This original research fulfills the preceding modeling efforts on thermal properties of EGWM and HTC applications in the literature. An experimental test setup is designed to compute HTC of mixture over a small circular aluminum heater surface, 9.5 mm in diameter, placed at the bottom 40-mm-wide wall of a rectangular channel 3 mm x 40 mm in cross section. Measurement data are utilized as the train and test data sets of the estimation process. Prediction results have shown that ANFIS provide more accurate and reliable approximations compared to ANN. ANFIS present correlation factor of 98.81 %, whereas ANN estimate 87.83 % accuracy for test samples.Item Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems(2015) Demircioglu, Erdem; Yagli, Ahmet Fazil; Gulgonul, Senol; Ankishan, Haydar; Tartan, Emre Oner; Sazli, Murat H.; Imeci, TahaThis paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achieve the best ANN performance, Particle Swarm Optimization (PSO) and Differential Evolution (DE) are applied with ANN's conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.