Browsing by Author "Celtikci, Emrah"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Novel Deep Learning Algorithm for the Automatic Detection of High-Grade Gliomas on T2-Weighted Magnetic Resonance I mages: A Preliminary Machine Learning Study(2020) Atici, Mehmet Ali; Sagiroglu, Seref; Celtikci, Pinar; Ucar, Murat; Borcek, Alp Ozgun; Emmez, Hakan; Celtikci, Emrah; 0000-0002-1655-6957; 31608975AIM: To propose a convolutional neural network (CNN) for the automatic detection of high-grade gliomas (HGGs) on T2-weighted magnetic resonance imaging (MRI) scans. MATERIAL and METHODS: A total of 3580 images obtained from 179 individuals were used for training and validation. After random rotation and vertical flip, training data was augmented by factor of 10 in each iteration. In order to increase data processing time, every single image converted into a Jpeg image which has a resolution of 320x320. Accuracy, precision and recall rates were calculated after training of the algorithm. RESULTS: Following training, CNN achieved acceptable performance ratios of 0.854 to 0.944 for accuracy, 0.812 to 0.980 for precision and 0.738 to 0.907 for recall. Also, CNN was able to detect HGG cases even though there is no apparent mass lesion in the given image. CONCLUSION: Our preliminary findings demonstrate; currently proposed CNN model achieves acceptable performance results for the automatic detection of HGGs on T2-weighted images.Item Utilizing Deep Convolutional Generative Adversarial Networks for Automatic Segmentation of Gliomas: An Artificial Intelligence Study(2022) Aydogan Duman, Ebru; Sagiroglu, Seref; Celtikci, Pinar; Demirezen, Mustafa Umut; Borcek, Alp Ozgun; Emmez, Hakan; Celtikci, Emrah; 34542897AIM: To describe a deep convolutional generative adversarial networks (DCGAN) model which learns normal brain MRI from normal subjects than finds distortions such as a glioma from a test subject while performing a segmentation at the same time. MATERIAL and METHODS: MRIs of 300 healthy subjects were employed as training set. Additionally, test data were consisting anonymized T2-weigted MRIs of 27 healthy subjects and 27 HGG patients. Consecutive axial T2-weigted MRI slices of every subject were extracted and resized to 364x448 pixel resolution. The generative model produced random normal synthetic images and used these images for calculating residual loss to measure visual similarity between input MRIs and generated MRIs. RESULTS: The model correctly detected anomalies on 24 of 27 HGG patients' MRIs and marked them as abnormal. Besides, 25 of 27 healthy subjects' MRIs in the test dataset detected correctly as healthy MRI. The accuracy, precision, recall, and AUC were 0.907, 0.892, 0.923, and 0.907, respectively. CONCLUSION: Our proposed model demonstrates acceptable results can be achieved only by training with normal subject MRIs via using DCGAN model. This model is unique because it learns only from normal MRIs and it is able to find any abnormality which is different than the normal pattern.