Browsing by Author "Cansu-Ergun, Emine Gul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Chemical Insight Into Benzimidazole Containing Donor-Acceptor-Donor Type Pi-Conjugated Polymers: Benzimidazole As An Acceptor(2018) Cansu-Ergun, Emine Gul; 0000-0002-3941-4345; I-7385-2017Benzimidazoles are commonly used as an electron acceptor unit in the synthesis of donor acceptor donor type conjugated polymers. This review offers an overview of the utility of benzimidazole derivatives in the synthesis of various donor acceptor donor type of conjugated polymers, covering the research trends in experimental studies. The selected molecules in this overview have been limited with the donor-acceptor-donor type of conjugated polymers including benzimidazole as an acceptor unit and the corresponding studies up to 2016 have been shown. The polymers examined in this paper are discussed in two sections. The first section includes the studies about the effect of benzimidazole unit on the optical feature of resulting donor-acceptor type polymers. The second section illustrates the benzimidazole-based donor-acceptor-donor type conjugated polymers which are utilized in photovoltaic applications.Item Covering the More Visible Region by Electrochemical Copolymerization of Carbazole and Benzothiadiazole Based Donor-Acceptor Type Monomers(2019) Cansu-Ergun, Emine Gul; 0000-0002-3941-4345; I-7385-2017An electrochromic copolymer film of 2-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-9H-carbazole (M1) and 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (M2) was prepared via electrochemical technique. The copolymerization was performed with one to one monomer feed ratio. Electrochemical and optical properties of the resulting copolymer film (P3) and the homopolymer films of M1 and M2 (P1 and P2) were investigated by using cyclic voltammetry and UV-Vis spectrometry techniques, and the corresponding results were compared. Incorporation of M1 and M2 into copolymer matrix was clearly observed on the resulting cyclic voltammograms and UV-Vis spectra. P3 covered the visible regions coming from both P1 and P2, and exhibited a neutral state darker color than those of homopolymers. P3 film was found to have a multichromic behavior, appearing as brown in its neutral state while changing its color upon oxidation to dark-gray (at about 0.3 V), to blue (at about 0.6 V) and finally to grayish cyan (beyond 0.9 V), with a corresponding optical band gap of 1.65 eV.