Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Baran, Yusuf"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    An answer to colon cancer treatment by mesenchymal stem cell originated from adipose tissue
    (2018) Kozanoglu, Ilknur; Iplik, Elif Sinem; Ertugrul, Baris; Baran, Yusuf; Cakmakoglu, Bedia; 0000-0002-5268-1210; 29922425; AAE-1241-2021
    Objective(s): Colon cancer is risen up with its complex mechanism that directly impacts on its treatment as well as its common prevalence. Mesenchymal stem cells (MSCs) have been considered as a therapeutic candidate for conventional disease including cancer. In this research, we have focused on apoptotic effects of adipose tissue-derived MSCs in colon cancer. Materials and Methods: MSCs were obtained from adipose tissue and characterized by Flowcytometer using suitable antibodies. MSCs, HT-29, HCT-116, RKO and healthy cell line MRC5 were cultured by different seeding procedure. After cell viability assay, changes in caspase 3 enzyme activity and the level of phosphatidylserine were measured. Results: For cell viability assay, a 48 hr incubation period was chosen to seed all cells together. There was a 1.36-fold decrease in caspase 3 enzyme activity by co-treatment of RKO and MSCs in addition to 2.02-fold decrease in HT-29 and MSCs co-treatment, and 1.103-fold increase in HCT-116 and MSCs. The results demonstrated that HCT-116 led to the highest rate of apoptotic cell death (7.5%) compared with other cells. Conclusion: We suggest that MSCs might remain a new treatment option for cancer by its differentiation and repair capacity.
  • No Thumbnail Available
    Item
    Effects of Intraperitoneal Injection of Allogeneic Bone Marrow-derived Mesenchymal Stem Cells on Bronchiolitis Obliterans in Mice Model
    (2017) Isik, Sakine; Uzuner, Nevin; Karaman, Meral; Karaman, Ozkan; Kiray, Muge; Kozanoglu, Ilknur; Bagriyanik, Husnu Alper; Arikan-Ayyildiz, Zeynep; Yandim, Melis Kartal; Baran, Yusuf; https://orcid.org/0000-0002-5268-1210; 28732434; AAE-1241-2021
    Bone marrow-derived mesenchymal stem cells (BMSCs) can ameliorate a variety of lung diseases such as asthma, lung fibrosis, and acute lung injury by its anti-inflammatory and immunmodulatory effects. In this study, we developed a mouse model of bronchiolitis obliterans (BO) and evaluated the effects of the intraperitoneal administration of BMSCs on lung histopathology and cytokine levels. 25 BALB/c mice were divided into four groups; control group (Group I), BO developed and 1x10(6) BMSCs-injected group (Group II), non-BO, 1x10(6) BMSCs-injected group (Group III), and BO developed and saline-injected group (Group IV). Histological and immunohistochemical findings of the lung tissue and the migration of BMSCs to the lung were evaluated using light and confocal microscopy techniques. Confocal microscopy evaluations showed that there was no noteworthy amount of BMSCs in the lung tissue of group III while significant amount of BMSCs was detected in group II. Wall thicknesses of terminal bronchiole and periterminal bronchiolar collagen deposition were significantly lower in group II compared to the group IV (p<0.05). Furthermore, according to the immunohistochemical staining results, CD3, CD4, CD8, CD20, CD68 and neutrophil elastase positive immune cells of group II were stained more positive than group IV cells (p<0.05). IFN-gamma IL-2 and TNF-alpha levels in bronchoalveolar lavage fluid (BALF) were significantly lower in group II compared to group IV (p<0.05). The findings of this study indicate that intraperitoneally administered BMSCs have potent effects on histopatological changes of the lung tissue and cytokine levels in the murine model of BO.
  • No Thumbnail Available
    Item
    Intraperitoneal Mesenchymal Stem Cell Administration Ameliorates Allergic Rhinitis in The Murine Model
    (2017) Isik, Sakine; Karaman, Meral; Adan, Aysun; Kiray, Muge; Bagriyanik, Husnu Alper; Sozmen, Sule Caglayan; Kozanoglu, Ilknur; Karaman, Ozkan; Baran, Yusuf; Uzuner, Nevin; https://orcid.org/0000-0002-5268-1210; 27380271; AAE-1241-2021
    Previous studies showed that bone marrow-derived mesenchymal stem cells (BMSCs) could ameliorate a variety of immune-mediated and inflammatory diseases due to their immunomodulatory and anti-inflammatory effects. In this study, we developed a mouse model of ovalbumin (OVA) induced allergic inflammation in the upper airways and evaluated the effects of the intraperitoneal administration of BMSCs on allergic inflammation. Twenty-five BALB/c mice were divided into five groups; group I (control group), group II (sensitized and challenged with OVA and treated with saline-placebo group), group III (sensitized and challenged with OVA and treated with 1 x 10(6) BMSCs), group IV (sensitized and challenged with OVA and treated with 2 x 10(6) BMSCs), and group V (sensitized and challenged with phosphate buffered saline (PBS) and treated with 1 x 10(6) BMSCs). Histopathological features (number of goblet cells, eosinophils and mast cells, basement membrane, epithelium thickness, and subepithelial smooth muscle thickness) of the upper and lower airways and BMSCs migration to nasal and lung tissue were evaluated using light and confocal microscopes. Levels of cytokines in the nasal lavage fluid and lung tissue supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Confocal microscopic analysis showed that there was no significant amount of BMSCs in the nasal and lung tissues of group V. However, significant amount of BMSCs were observed in group III and IV. In OVA-induced AR groups (group II, III, and IV), histopathological findings of chronic asthma, such as elevated subepithelial smooth muscle thickness, epithelium thickness, and number of goblet and mast cells, were determined. Furthermore, the number of nasal goblet and eosinophil cells, histopathological findings of chronic asthma, and IL-4, IL-5, IL-13, and NO levels was significantly lower in both BMSCs-treated groups compared to the placebo group. Our findings indicated that histopathological findings of chronic asthma were also observed in mice upon AR induction. BMSCs migrated to the nasal and lung tissues following intraperitoneal delivery and ameliorated to the airway remodeling and airway inflammation both in the upper and lower airways via the inhibition of T helper (Th) 2 immune response in the murine model of AR.
  • Thumbnail Image
    Item
    Therapeutic Potential of Apigenin, a Plant Flavonoid, for Imatinib-Sensitive and Resistant Chronic Myeloid Leukemia Cells
    (2014) Solmaz, Soner; Gokbulut, Aysun Adan; Cincin, Birsu; Ozdogu, Hakan; Boga, Can; Cakmakoglu, Bedia; Kozanoglu, Ilknur; Baran, Yusuf
    Despite the presence of many therapeutic regimens like imatinib and other tyrosine kinase inhibitors, the development of resistance, intolerance, and side effects makes chronic myeloid leukemia (CML) therapy challenging. Thus, there is a need to discover novel drugs for CML patients. In this study, we attempted to assess apigenin, a common plant dietary flavonoid, in terms of its cytotoxic, apoptotic, and cytostatic effects on imatinib-sensitive and resistant Philadelphia-positive CML cells. We analyzed apigenin's effects on cell proliferation, apoptosis, caspase-3 activity, loss of mitochondrial membrane potential, and cell cycle progression in K562 and K562/IMA3 cells. Furthermore, we described genes and gene networks that are modulated in CML in response to apigenin. Results of our study revealed that apigenin has cytotoxic and apoptotic effects on both cell types. We also displayed that apigenin induced G2/M arrest in K562 cells while arresting K562/IMA3 cells in S phase especially at the highest apigenin concentration. The expression analysis identified a set of genes that were regulated by apigenin in K652 and K562/IMA3 cells. Association of modulated genes with biological functional groups identified several networks affected by apigenin including cell survival, proliferation, cell death, cell cycle, and cell signalling pathways.

| Başkent Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber |

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify