Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alabas-Uslu, C."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Optimization of Manufacturing Systems Using A Neural Network Metamodel with A New Training Approach
    (2009) Dengiz, B.; Alabas-Uslu, C.; Dengiz, O.
    In this study, two manufacturing systems, a kanban-controlled system and a multi-stage, multi-server production line in a diamond tool production system, are optimized utilizing neural network metamodels (tst_NNM) trained via tabu search (TS) which was developed previously by the authors. The most widely used training algorithm for neural networks has been back propagation which is based on a gradient technique that requires significant computational effort. To deal with the major shortcomings of back propagation (BP) such as the tendency to converge to a local optimal and a slow convergence rate, the TS metaheuristic method is used for the training of artificial neural networks to improve the performance of the metamodelling approach. The metamodels are analysed based on their ability to predict simulation results versus traditional neural network metamodels that have been trained by BP algorithm (bp NNM). Computational results show that tst NNM is superior to bp NNM for both of the manufacturing systems. Journal of the Operational Research Society (2009) 60, 1191-1197. doi:10.1057/palgrave.jors.2602620 Published online 30 July 2008
  • No Thumbnail Available
    Item
    A Tabu Search Algorithm for the Training of Neural Networks
    (2009) Dengiz, B.; Alabas-Uslu, C.; Dengiz, O.
    The most widely used training algorithm of neural networks (NNs) is back propagation ( BP), a gradient-based technique that requires significant computational effort. Metaheuristic search techniques such as genetic algorithms, tabu search (TS) and simulated annealing have been recently used to cope with major shortcomings of BP such as the tendency to converge to a local optimal and a slow convergence rate. In this paper, an efficient TS algorithm employing different strategies to provide a balance between intensification and diversification is proposed for the training of NNs. The proposed algorithm is compared with other metaheuristic techniques found in literature using published test problems, and found to outperform them in the majority of the test cases.

| Başkent Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber |

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify