Scopus İndeksli Yayınlar Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/11727/4809

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Strategies to improve the diagnosis and clinical treatment of dermatophyte infections
    (2023) Durdu, Murat; Ilkit, Macit; 36329574
    Introduction Significant problems are associated with the diagnosis and treatment of dermatophyte infections, which constitute the most common fungal infections of the skin. Although this is a common problem in the community, there are no adequate guidelines for the management of all forms of dermatophyte infections. Even if dermatophytes are correctly diagnosed, they sometimes exhibit poor susceptibility to several antifungal compounds. Therefore, long-term treatment may be needed, especially in immunosuppressed patients, for whom antifungal pharmacotherapy may be inconvenient owing to allergies and undesirable drug interaction-related effects. Areas covered In this review article, problems related to the diagnosis and treatment of dermatophyte infections have been discussed, and suggestions to resolve these problems have been presented. Expert opinion Pretreatment microscopic or mycological examinations should be performed for dermatophyte infections. In treatment-refractory cases, antifungal-resistant strains should be determined using antifungal susceptibility testing or via molecular methods. Natural herbal, laser, and photodynamic treatments can be used as alternative treatments in patients who cannot tolerate topical and systemic antifungal treatments.
  • Item
    Utilizing Deep Convolutional Generative Adversarial Networks for Automatic Segmentation of Gliomas: An Artificial Intelligence Study
    (2022) Aydogan Duman, Ebru; Sagiroglu, Seref; Celtikci, Pinar; Demirezen, Mustafa Umut; Borcek, Alp Ozgun; Emmez, Hakan; Celtikci, Emrah; 34542897
    AIM: To describe a deep convolutional generative adversarial networks (DCGAN) model which learns normal brain MRI from normal subjects than finds distortions such as a glioma from a test subject while performing a segmentation at the same time. MATERIAL and METHODS: MRIs of 300 healthy subjects were employed as training set. Additionally, test data were consisting anonymized T2-weigted MRIs of 27 healthy subjects and 27 HGG patients. Consecutive axial T2-weigted MRI slices of every subject were extracted and resized to 364x448 pixel resolution. The generative model produced random normal synthetic images and used these images for calculating residual loss to measure visual similarity between input MRIs and generated MRIs. RESULTS: The model correctly detected anomalies on 24 of 27 HGG patients' MRIs and marked them as abnormal. Besides, 25 of 27 healthy subjects' MRIs in the test dataset detected correctly as healthy MRI. The accuracy, precision, recall, and AUC were 0.907, 0.892, 0.923, and 0.907, respectively. CONCLUSION: Our proposed model demonstrates acceptable results can be achieved only by training with normal subject MRIs via using DCGAN model. This model is unique because it learns only from normal MRIs and it is able to find any abnormality which is different than the normal pattern.
  • Item
    Detection of COVID-19 by Machine Learning Using Routine Laboratory Tests
    (2021) Cubukcu, Hikmet Can; Topcu, Deniz Ilhan; Bayraktar, Nilufer; Gulsen, Murat; Sari, Nuran; Arslan, Ayse Hande; 0000-0002-1219-6368; 0000-0002-7886-3688; 34791032; E-3717-2019; Y-8758-2018
    Objectives The present study aimed to develop a clinical decision support tool to assist coronavirus disease 2019 (COVID-19) diagnoses with machine learning (ML) models using routine laboratory test results. Methods We developed ML models using laboratory data (n = 1,391) composed of six clinical chemistry (CC) results, 14 CBC parameter results, and results of a severe acute respiratory syndrome coronavirus 2 real-time reverse transcription-polymerase chain reaction as a gold standard method. Four ML algorithms, including random forest (RF), gradient boosting (XGBoost), support vector machine (SVM), and logistic regression, were used to build eight ML models using CBC and a combination of CC and CBC parameters. Performance evaluation was conducted on the test data set and external validation data set from Brazil. Results The accuracy values of all models ranged from 74% to 91%. The RF model trained from CC and CBC analytes showed the best performance on the present study's data set (accuracy, 85.3%; sensitivity, 79.6%; specificity, 91.2%). The RF model trained from only CBC parameters detected COVID-19 cases with 82.8% accuracy. The best performance on the external validation data set belonged to the SVM model trained from CC and CBC parameters (accuracy, 91.18%; sensitivity, 100%; specificity, 84.21%). Conclusions ML models presented in this study can be used as clinical decision support tools to contribute to physicians' clinical judgment for COVID-19 diagnoses.
  • Item
    Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches
    (2020) Beyaz, Salih; Acici, Koray; Sumer, Emre; 0000-0002-5788-5116; 32584712; K-8820-2019
    Objectives: This study aims to detect frontal pelvic radiograph femoral neck fracture using deep learning techniques. Patients and methods: This retrospective study was conducted between January 2013 and January 2018. A total of 234 frontal pelvic X-ray images collected from 65 patients (32 males, 33 females; mean age 74.9 years; range, 33 to 89 years) were augmented to 2106 images to achieve a satisfactory dataset. A total of 1,341 images were fractured femoral necks while 765 were non-fractured ones. The proposed convolutional neural network (CNN) architecture contained five blocks, each containing a convolutional layer, batch normalization layer, rectified linear unit, and maximum pooling layer. After the last block, a dropout layer existed with a probability of 0.5. The last three layers of the architecture were a fully connected layer of two classes, a softmax layer and a classification layer that computes cross entropy loss. The training process was terminated after 50 epochs and an Adam Optimizer was used. Learning rate was dropped by a factor of 0.5 on every five epochs. To reduce overfitting, regularization term was added to the weights of the loss function. The training process was repeated for pixel sizes 50x50, 100x100, 200x200, and 400x400. The genetic algorithm (GA) approach was employed to optimize the hyperparameters of the CNN architecture and to minimize the error after testing the model created by the CNN architecture in the training phase. Results: Performance in terms of sensitivity, specificity, accuracy, F1 score, and Cohen's kappa coefficient were evaluated using five-fold cross validation tests. Best performance was obtained when cropped images were rescaled to 50x50 pixels. The kappa metric showed more reliable classifier performance when 50x50 pixels image size was used to feed the CNN. The classifier performance was more reliable according to other image sizes. Sensitivity and specificity rates were computed to be 83% and 73%, respectively. With the inclusion of the GA, this rate increased by 1.6%. The detection rate of fractured bones was found to be 83%. A kappa coefficient of 55% was obtained, indicating an acceptable agreement. Conclusion: This experimental study utilized deep learning techniques in the detection of bone fractures in radiography. Although the dataset was unbalanced, the results can be considered promising. It was observed that use of smaller image size decreases computational cost and provides better results according to evaluation metrics.