Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Erdogan, Alperen"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Heart Disease Prediction by Using Machine Learning Algorithms
    (2020) Erdogan, Alperen; Guney, Selda
    Nowadays, one of the most important illness is heart disease which cause of mostly patients dead. Medical diagnosis of heart diseases is very difficult. While heart diseases are diagnosed medically, they can be confused with other diseases that show same symptoms such as chest pain, shortness of breath, palpitations and nausea. This makes it difficult to diagnose heart diseases medically. In this study, the presence of heart diseases was determined by using machine learning algorithms. In this study, the data obtained from the patients were weighted according to their effects on the success rate. In this study, a method is proposed for determine weight coefficient. According to proposed method's results, 86,90% success was achieved with 13 different features obtained from the patients.
  • No Thumbnail Available
    Item
    Wi-Fi Based Indoor Positioning System with Using Deep Neural Network
    (2020) Guney, Selda; Erdogan, Alperen; Aktas, Melih; Ergun, Mert
    Indoor positioning is one of the major challenges for the future large-scale technologies. Nowadays, it has become an attractive research subject due to growing demands on it. Several algorithms and techniques have been developed over the decades. One of the most cost-effective technique is Wi-Fi-based positioning systems. This technique is infrastructure-free and able to use existing wireless access points in public or private areas. These systems aim to classify user's location according to pre-defined set of grids. However, Wi-Fi signals could be affected by interference, blockage of walls and multipath effect which increases error of classification. In this study Deep Neural Networks and conventional machine learning classifiers are utilized to classify 22 squared grids which represent locations. Five primary Wireless Access Points (WAPs) were mounted indoor environment and 177 secondary WAPs are observed by Wi-Fi module. Dataset was created with using five primary and 177 secondary WAPs. The performance of proposed method was tested using Deep Neural Networks and machine learning classifiers. The results show that Deep Neural Network present the best performance as compared to machine learning classifiers. 95.45% accuracy was achieved by using five primary WAPs and 97.27% accuracy was achieved by using five primary and 177 secondary WAPs together for Deep Neural Network.

| Başkent Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber |

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify