Blood pressure prediction from speech recordings
Abstract
The aim of this study is to extract new features to show the relationship between speech recordings and blood pressure (BP). For this purpose, a database consisting of / a / vowels with different BP values under the same room and environment conditions is presented to the literature. Convolutional Neural Networks- Regression (CNN-R), Support Vector Machines- Regression (SVMs-R) and Multi Linear Regression (MLR) are used in this study to predict BP with extracted features. From the experiments, the highest accuracy rates of BP prediction from / a / vowel have been obtained based on Systolic BP values with CNNR. In the study, 89.43 % for MLR, 92.15 % for SVM-R and 93.65 % for CNN-R are obtained when ReliefF has been used. When the root mean square errors (RMSE) are considered, the lowest error value is obtained with CNN-R as RMSE = 0.2355. In conclusion, it can be observed that the proposed feature vector (FVx) shows a relationship between BP and the human voices, and in this direction, it can be used as an FVx in a system that will be developed in order to follow the tension of individuals. (C) 2020 Elsevier Ltd. All rights reserved.