• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • View Item
  •   DSpace Home
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transscleral Delivery of Bevacizumab-Loaded Chitosan Nanoparticles

Thumbnail
Date
2019
Author
Ugurlu, Nagihan
Asik, Mehmet Dogan
Cakmak, Hasan Basri
Tuncer, Sema
Turk, Mustafa
Cagil, Nurullah
Denkbas, Emir Baki
Metadata
Show full item record
Abstract
Purpose: The aim of this study was to synthesize bevacizumab-loaded nanoparticles and evaluate their effects on the treatment of posterior segment diseases via subtenon injections. Methods: Bevacizumab-loaded chitosan nanoparticles (BLCNs) were synthesized by the ionic gelation method, and their physicochemical characteristics and in vitro release profile were studied. The BLCNs were characterized using atomic force microscopy (AFM), FTIR spectroscopy, dynamic light scattering, and scanning electron microscopy. The BLCNs were delivered into rabbits' eyes via posterior subtenon injections. An immunohistochemical evaluation of the ocular tissues was performed, and the vitreous humor and serum bevacizumab levels were measured by ELISA. Results: Bevacizumab-loaded chitosan nanoparticles with a diameter of 80 to 380 nm were prepared and characterized. In vitro studies showed that after the first 5 days of the experiment, a significant increase in the drug release maintained the desired drug dosage for 3 weeks. Immunohistochemical in vivo studies revealed that there were BLCNs penetrating through the sclera. Furthermore, the intravitreal bevacizumab concentration reached a maximum concentration of 18 mu g/ml, and it decreased to 6 mu g/ml after only a week. Conclusion: The results revealed that subtenon injection of BLCNs is a promising alternative to intravitreal injections. In addition to the ELISA studies, immunohistochemical experiments confirmed that BLCNs enable transscleral bevacizumab penetration, and BLCN usage may provide the required bevacizumab levels for the treatment of posterior segment diseases.
URI
http://hdl.handle.net/11727/5407
Collections
  • Mühendislik Fakültesi / Faculty of Engineering [132]
  • PubMed İndeksli Yayın Koleksiyonu [538]
  • Scopus İndeksli Yayın Koleksiyonu [655]
  • Wos İndeksli Yayınlar Koleksiyonu [1001]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Politika
Açık Bilim Politikası
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategoryThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategory

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV