• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Enstitüler / Institutes
  • Fen Bilimleri Enstitüsü / Science Institute
  • View Item
  •   DSpace Home
  • Enstitüler / Institutes
  • Fen Bilimleri Enstitüsü / Science Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Arıma ve yapay sinir ağları (YSA) kullanılarak hibrit tahmin modeli geliştirilmesi

Thumbnail
View/Open
10064085.pdf (2.361Mb)
Date
2015
Author
Ateşonğun, Ahmet Adil
Metadata
Show full item record
Abstract
Zaman serileri tahmini, temel veri özellikle doğrusal ve doğrusal olmayan bileşenler içeriyorsa karmaşık bir işlemdir. Bu çalışmada, doğrusal bir metot olan Otoregresif Entegre Hareketli Ortalama (ARIMA) ve doğrusal olmayan bir metot olan Yapay Sinir Ağları (YSA) (Çok Katmanlı Perceptron kullanılarak) zaman serileri verilerindeki karmaşık davranışları yakalamak için kullanılmıştır. Araştırma yaklaşımımızda, Literatürde iyi bilinen birkaç veri seti üzerinde ilk olarak ARIMA ve YSA yaklaşımları ayrı ayrı kullanılmıştır. Daha sonra, ARIMA ve YSA’yı birleştiren bir hibrit (melez) metodoloji aynı veri setleri üzerinde test edilmiştir. ARIMA, YSA ve hibrit model yaklaşımı tahmin performansları sunulmuş ve Literatürde önceki çalışmalarla karşılaştırılmıştır. Önerilen hibrit modelin performansı değerlendirilirken farklı tahmin ölçütleri kullanılmıştır. Genelleştirilen hibrit model, daha sonra Türkiye Buğday Verimliliği verisinde kullanılmıştır. Test edilen veri seti üzerinde ARIMA ya da YSA yaklaşımlarının tek başına performanslarıyla kıyaslandığında hibrit model performansının daha üstün olduğu görülmüştür. Time series forecasting is a complex procedure especially if underlying data include linear and nonlinear components together. In this study we employ a linear method Autoregressive Moving Average (ARIMA) and a non-linear method (Artificial Neural network, ANN, approach using Multi Layer Perceptron) to capture the complex behavior of the time series data. In our research approach we first use ARIMA and ANN approaches separately on several well known data sets from the literature. Then, a hybrid methodology that combines ARIMA and ANN is tested on the same data sets. The forecasting performance of the ARIMA, ANN and hybrid approaches is presented and compared with the previous work from the literature. Different forecasting metrics are used in evaluating performance of the proposed hybrid method. A generalized hybrid model is then used on Turkish wheat yield data. It is observed that hybrid model performance is superior when it is compared to the performance of standalone ARIMA or ANN approaches on tested data set.
URI
http://hdl.handle.net/11727/2086
Collections
  • Fen Bilimleri Enstitüsü / Science Institute [187]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Politika
Açık Bilim Politikası
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategoryThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategory

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV