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OZET

Kevser YILMAZ

KUP UYDULARDA YILDIZ iZLEYiCi SENSORLER iCiN YOLOV3 VE
KALMAN FiLTRESI TABANLI YILDIZ KONUM TESPIT ALGORITMASI
Baskent Universitesi Fen Bilimleri Enstitiisii

Elektrik Elektronik Miihendisligi Anabilim Dah

2022

CubeSat'larda tutum tahmininin yiiksek dogrulugu, sistemin giivenilirligi ve CubeSat'in
gorevlerini eksiksiz yerine getirmesi i¢in ¢ok onemlidir. Yildiz takip kameralari, uydularda
yiksek dogrulukta tutum tahmini saglamak icin giivenilir seceneklerdir. Tutum tahmininde
hassas Ol¢limler yapabilmesi igin yildizlarin konum bilgisi kritik konulardan biridir.
Literatiirde ¢esitli yildiz algilama ve konum algilama algoritmalar1 kullanilmaktadir.
Ozellikle makine dgrenmesinin gelismesiyle birlikte geleneksel yontemlerin yani sira son
teknoloji algoritmalar da gelistirilmeye baslanmistir. Literatiirde makine 6grenimi kullanan
yildiz tespit algoritmalarinda yildiz tespitinin dogrulugu, geleneksel yontemlere gére daha
diisiik kalmaktadir. Bu nedenle, bu tez, son teknoloji bir yontem olarak yildiz tespiti i¢in
YOLOvV3 derin 6grenme agimi ve yildizlarin konumlarini izlemek ve olasi hatalardan
kacinarak dogrulugu daha da artirmak i¢in geleneksel Kalman filtresini kullanir. Gergek
zamanli nesne algilama algoritmalari i¢erisinde yiiksek hassasiyet ve hizli ¢alisma yapisina
sahip olan YOLOV3 algoritmasi, yildiz takip kameralarindan gelen goriintiileri isleyerek,
yildiz algilama ve konum bilgisi i¢in konum tahmininin hassasiyetini neredeyse yiizde 96
oraninda tek basina tamamlamaktadir. Ayrica kiip uydular i¢in yildiz izleyici ile gelistirilen
tutum tahmin algoritmasinda YOLOv3 agindan gelen bilgiler bilinen en giivenilir tahmin
yontemlerinden biri olan Kalman filtresi ile filtrelenmekte ve dogruluk orani neredeyse

ylzde 99'a ulagsmaktadir.

ANAHTAR KELIMELER: Kiip uydu, Yildiz izleyici sensér, YOLOvV3, Kalman Filtresi,

Gergek zamanli nesne takibi, derin 6grenme



ABSTRACT

Kevser YILMAZ

YOLOV3 AND KALMAN FILTER BASED STAR DETECTING ALGORITHM
FOR CUBESATS’ STAR TRACKER SENSORS

Baskent University Institute of Science

Department of Electrical and Electronics Engineering

2022

High accuracy of the attitude estimation in CubeSats is crucial for the reliability of the
system and the complete fulfillment of CubeSat's missions. Star tracker cameras are reliable
options for providing highly accurate attitude estimation on the satellites. The position
information of the stars is one of the critical issues for high accuracy. Various star detection
and position detection algorithms are used. Especially with the development of machine
learning, in addition to traditional methods, state-of-the-art algorithms have begun to be
developed. The accuracy of star detection in star detection algorithms using machine
learning in the literature remains lower than in traditional methods. Therefore, this thesis
uses the YOLOvV3 deep learning network for star detection as a state of art method, and the
traditional Kalman filter to track stars' positions and further increase accuracy by avoiding
potential errors. The YOLOv3 algorithm, which has high sensitivity and fast working
structure within the real-time object detection algorithms, processes the images from the star
tracker cameras, increasing the sensitivity of the attitude estimation for star detection and
position information by almost 99 percent. Moreover, in the attitude estimation algorithm
developed with the star tracker for the cube satellites, the information coming from the
YOLO network is filtered with the Kalman filter, which is one of the most reliable

fractionation methods known, and the accuracy rate reaches almost 99 percent.

KEY WORDS: CubeSat, Star tracker, YOLOv3, Kalman Filter, Real-time object detection.

Deep learning
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1. INTRODUCTION

CubeSat was first developed by Stanford University and California Polytechnic State
University (Cal Poly). Previously, it used only in space exploration for university students
due to its low cost and relatively easy design compared to other satellites. However, with the
developing space technology, CubeSats started to be used widely by companies that wanted

to do space-related research.

Like every spacecraft, CubeSats must be able to determine its position in space as
accurately as possible in order to fully fulfill its mission. For this reason, attitude prediction
is a very critical issue. Star tracker sensors are the most accurate option for CubeSats to
provide the highest precision results. With the developing technology, these sensors give
very high sensitivity results. However, the hardware design of these sensors is almost frozen.

It is possible to increase the sensitivity rate with star detection algorithms.

The purpose of this thesis is to develop a star detection algorithm using state-of-art
YOLOv3 and Kalman filter, different from traditional star detection algorithms. The
YOLOv3 network, which has been widely used in real-time applications in recent years and
gives very fast and high precision results, has been used in star detection. In addition, it is
aimed to increase the sensitivity by using the traditional Kalman filter. Shooting star images
on a single axis were created artificially and trained with the YOLOv3 network. The training
was carried out using the transfer-learning method. The trained YOLOvV3 network detects
stars and finds the position in the form of pixels. The position information consist x, and y
axis values of the image. The star positions found, on the other hand, have been smoothed
with the Kalman Filter, one of the most robust estimation methods known, and a success rate
of almost 99 percent has been achieved. The algorithm’s codes are developed Google Colab
environment. Pro extension is used for the training process because of needing for high GPU.
The algorithm is developed using Python language. Figure 1.1 summarizes this process of

the algorithm.

Captured star image Star classification )
by star tacker YOLOw3 Network and x, y coordinates Kalman Filter Stari:.'gr;t;?irgr!nate
camera detection

Figure 1.1. General Block Diagram of the Algorithm.




CubeSat can find its own attitude information using the reference point by following
the star. Figure 1.2 shows that a star detection for attitude control using by reference point.
The aim of this thesis is to provide the necessary estimation for attitude control according to

the distance from the reference point by following the stars.

* = = = m = ®m ®mE ®m DReferencepoint

Figure 1.2. Star Detection.

The thesis consists of 5 main chapters, the first chapter includes a literature survey for
star trackers and CubeSats. In the second part, the star detection and coordinate finding
algorithm with YOLOv3 are explained. In the third chapter, smoothing star coordinates with
the classical Kalman filter is explained. In the fourth chapter, the analysis and evaluation of
the results are completed. In the fifth chapter, suggestions are made about how the proposed

algorithm can be applied and improved for the conclusion and future research.

1.1. CubeSats

CubeSat is a spacecraft with design specifications developed by Stanford University
and California Polytechnic State University (Cal Poly). These specifications were firstly
developed in 1999. The CubeSat standards were developed for a " Poly Picosatellite Orbital
Deployer " or " P-POD " launcher developed by Cal Poly. Figure 1.1.1 shows the P-POD
launcher. These specifications are design standards, production processes, and system

testing. The proposed CubeSat standards are for LEO and the CubeSat’s main purposes are
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increasing space research and easy access to space carrying small payloads. A unit (1U)
CubeSat is a maximum of 1.333 kg and 10cm for every side of the cube. This is a standard
1U CubeSat. Figure 1.1.2 shows 1U CubeSat CP1 and 3U CubeSat CP10. The purpose of
standardized CubeSats is appropriating for the standardized launcher. Using a standard
launcher reduces risks and saves money. Because launchers are overpriced, and also

debugged from possible bugs as it has been tested before.[1], [2], [3]

Figure 1.1.1. Poly-Picosatellite Orbital Deployer (P-POD) [4].



1U Standard 3U Standard
Dimensions: Dimensions:
10cmx 10cm x 11 cm 10cm x 10 cm x 34 cm

Figure 1.1.2. 1U and 3U CubeSats [5].

CubeSats becomes more popular day by day due to its advantages such as low-cost
platforms, easy integration, small payloads, and timesaving in design. As mentioned in the
paragraph above, standardizing CubeSats, and standardizing the launchers used in CubeSats
is very helpful in saving time during the design phase. While Cube Satellites were mostly
developed by university students, nowadays, they have been widely used by researchers and
companies who want to conduct space exploration, due to the above-mentioned advantages.
The spread of space-related studies on many different subjects, and the developments in

camera and image processing have led to an increased interest in CubeSats. In addition,
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developments in recent years such as the wide variety of COTS (commercial off-the-shelf)
products, growing accessibility, small area coverage, and affordable prices have contributed
greatly to the increase in CubeSat applications. With the increasing application areas, some
subsystems become critical for CubeSats to perform their missions correctly.[1]

Like any spacecraft, a CubeSat must be able to determine its current position in space
to accurately perform its mission. The subsystem that realizes this is the attitude
determination system, known as ADS for short. Attitude estimation algorithms play a key
role for the CubeSats. Because attitude control directly depends on the attitude estimation.
The more accurate the attitude estimation, the more successful the attitude control will be,
which will make perfect the purpose that the satellite will directly serve. The most basic and
important factor that determines the accuracy of attitude determination is sensor selection.
In order to make our proposed attitude determination algorithm more sensitive, star trackers,

one of the most sensitive ADS sensors known, are used. [2]

1.2. CubeSat Attitude Determination Devices

Attitude detection and control systems (ADCSs) are one of the most important
subsystems for any spacecraft to properly achieve its missions. ADCS consists of two main
parts. The first part is ADCS components for CubeSat compatible and second part is attitude
determination and control algorithms. ADCS sensors have been miniaturized by the
dimensions of the CubeSats. These sensors were photodiode, magnetorquer reaction wheels,
magnetometers, magnetometers, sun sensors, horizon sensors, star trackers. Sun and horizon
sensors will not be enough to increase attitude estimation accuracy for CubeSats. Because
these sensors depend only on the sun and horizon vectors. A CubeSat's ADCS requires the

use of a star tracker to operate with high precision. [6]

1.3. Star Tracker

Finding a location has been a curious subject for humanity for many years. Since it
was discovered that it is possible to find positions and determine directions with celestial
bodies, and stars have been followed. The first sextant by John Bird in 1757 could measure
the Earth's horizon and the angles of celestial bodies, and in 1437 it could be designed by
Hipparchus as the first star to contain 992 stars. The latest technologies, a more advanced
star option developed from observations from the sky. One of the most popular star

catalogues Tycho-2 contains 2.5 million brightest stars in the sky. The first star sensor was



developed by NASA for use on Mars missions. With the development of star catalogs and
star sensors, the use of this sensor in satellites and spacecraft has become widespread and
reliability has increased.[13]-[19]

In recent years, the autonomous capabilities and other capabilities of star tracking
cameras have improved significantly. Figure 1.3.1 represents a star tracker which is
CubeStar. Many spacecraft use star trackers to increase attitude determination accuracy.
They are designed for:[7] [8] [9] [10] [11]

* no support needed for attitude angle and ratio estimation
» working in various mission circumstances
« finding fast and autonomously solutions to the lost-in-space problem

« to provide angular velocity information to the system in difficult conditions where

estimating an orientation for spacecraft is not possible

Basically, the star tracker works as an electronic camera connected to the computer.
Stars are found and identified by processing the perceived image of the sky. After detecting
stars from the star tracker cameras, an estimation of the satellite's attitude according to the
star catalog. Star trackers have made notable improvements lately. First-generation star
trackers detected only a few bright stars and send to the spacecraft's computer the data of
focal plane coordinates. Since this coordinate data is not related to the inertia space, direct
attitude information could not be obtained. Improvements on star tracker sensors, allow to
obtain direct attitude information. Hardware parts’ improvements of star trackers have
reached a certain point today. Increasing the sensitivity of star trackers is now possible with
star detection algorithms. Thanks to, the developments in space-qualified microcomputers
in recent years, information about stars has begun to be stored. This has led to the
development of a wide variety of algorithms. In order to increase the sensitivity and
reliability of the new generation star trackers, it is necessary to develop algorithms instead
of hardware. Therefore, the algorithm we proposed in this thesis can be used in new

generation star tracker cameras with speed and accuracy advantages. [9],[10],[11]



Figure 1.3.1. CubeSat Star Tracker Sensor, CubeStar. [12]

Over time, many studies have been done on the integration of inertial navigation
system (INS), GPS and star sensor and different techniques have been tried to be developed.
One of these studies is the integration of INS and star sensor in the article published by Ali
and Fang in 2004. Later, in the article published by Ali and Fang in 2006, INS and star
tracker with Kalman Filter is discussed. This article is important in terms of using Kalman
Filter and speed for error compensation. [20]-[24] In 2008, Xu and Fang suggested the
integration of INS and CNS using neural networks. [25] Figure 1.3.2 represents a star tracker
simulated image captured from Stellarium. Figurel.3.3 represents the summarized general

parts of a autonomous star tracker.

Figure 1.3.2. Star Tracker simulated Image from Stellarium.
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Figure 1.3. 3. Sketch of a general autonomous star tracker [11].

Star tracker's performance is affected by the following factors: [26]

* Field of view (FOV)

» Star detection threshold

« Starlight detecting

« Algorithm of star identification
« Star catalog

« Calibration

Firstly, the star image captured by the star tracker device (CCD or CMOS) the
centroids are detected according to the illumination intensity of stars. The centroiding
algorithm’s purpose is detecting positions of the stars in the image from the star tracker
device. After the centroiding, the process continues with star identification. This step is
called the star matching algorithm. The centroiding algorithms are discussed the following
subtitle.[27]

1.4.Literature Survey About Star Detection Algorithms

Star tracker algorithms’ first step is detecting stars and their locations on the image.

This step is vital for attitude estimation and control. To identify the stars correctly, the star



detection algorithm must be able to obtain high sensitivity and real-time system

synchronization speed.

There are two different traditional star detection methods. These traditional methods
are the image moment analysis method and point spread function method. In the image
moment analysis method, there is a threshold value determined by the brightness. All objects
above this threshold value are detected as stars. However, non-star objects such as planets
can be detected as stars. Therefore, this method is not a robust method. Point spread function
method detects the stars above the threshold. This threshold value is obtained according to
background noise level’s standard deviation. This method allows to true star detection when
compared with image moment analysis. On the other hand, point spread function method
cannot detect all stars on the image.

There are several deep learning-based star detection and identification algorithms.
Neural networks were first used in star detection in 1989. After that, an algorithm with fuzzy
logic and neural networks to identify stars was proposed by Hong in 2000. It was proposed
by Jiang in 2012 by combining neural networks with the triangle and grid algorithm. In 2019,
this algorithm, called RPNet by Xu, Jiang and Liu, is based on representation learning. In
2020, Rijlaarsdam proposed another star recognition neural network algorithm. Another
algorithm proposed in 2021 is the one-dimensional CNN based star identification algorithm
by Bendong Wang and his friends. [28]-[33]

All the methods are developed that traditional methods and deep learning-based star
detection algorithms have some deficiencies. In traditional star detection algorithms, image
moment analysis method detects too inaccurate stars and point spread function cannot detect
all stars. In addition, deep learning-based algorithms recommended so far are not optimal
options in real-time systems due to speed or large memory occupancy. This thesis studies,
the YOLOv3 and Kalman Filter star detection algorithm detects all stars no more or less
stars. Besides this algorithm offers high accuracy and fast execution. The fact that YOLOvV3
is very successful in detecting small objects, and the Kalman filter is the most robust filter

known, has made this study successful.



2. DETECTION BY STAR TRACKER USING YOLOV3

In this chapter, deep learning object detection algorithms, YOLOvV3 architecture, and
proposed YOLOVv3 star detection algorithm are explained. As a mentioned previous chapter,
with the increasing popularity of CubeSats, attitude determination has become one of the
most important issues. Star trackers are a reliable option for CubeSat attitude determination
with their high accuracy in attitude determination. Detection of stars is one of the most
important factors affecting the accuracy of attitude estimation. In respect thereof, the object

detection and recognition issues become important.

Figure 2.1 represents block diagram of the algorithm. First step of the algorithm is
preparing star dataset. In this study, dataset created artificially for shooting star on a single
axis. After this step train dataset, validation dataset and test datasets were divided according
to Pareto principle. Second step is annotation these datasets according to Pascal VOC format.

One of the most important steps is selecting the most accurate model. Training models are
obtained using transfer learning approach. Transfer learning approach is increase accuracy
and saves development time. The training model is decided by mAP and loss values. After
training model images have applied this model. Star classification and location information
are obtained from the YOLOv3 model.

The main second part of the algorithm is Kalman Filtering. This part’s aim is smoothing the
results of the YOLOv3 network. In this algorithm star’s velocity is assumed constant

velocity.

10



‘ Preparing Star Dataset ‘

h 4

| Annotating in Pascal |
VOC Format

Y

' Star detection model |
training

h 4

Detecting the stars and |
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Figure 2.1. Block Diagram of Algorithm.

2.1.Deep Learning Object Detection Algorithms

In the last decade, real-time object detection algorithms including artificial neural
networks have made enormous progress. Performing object detection in machine learning,
localizing, and recognizing are the focus issues in order to be able to distinguish objects.
Obiject detection methods can be surveyed under the headings of machine learning-based

and deep learning-based approaches. Deep learning-based approaches realize end-to-end

object detection through convolutional neural networks. [34]

Object detection algorithms can basically divide into two main classes. These are one-
stage object detection algorithms and two-stage object detection algorithms. When we

compare these algorithms, the main difference between them is the generation of region
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proposal. In single-stage object detection algorithms, there is no need for a region proposal.
The coordinate and accuracy information of the object can be obtained directly. Thus, single-
stage object detection algorithms come to the fore with their high extraction speed. Two-
stage object detection algorithms create region proposal before classification and positioning
processes. The impressive feature of two-stage object recognition algorithms is that they can

achieve high accuracy in location determination and recognition.[34]

The most popular CNN-based real-time image processing algorithms are R-CNN
algorithm and R-CNN variants, YOLO algorithm and YOLO variants. R-CNN methods are
based on two-stage detection and YOLO methods are based on one-stage detection. R-CNN
does not work on the entire image. The image is divided into regions and then classification
is performed. YOLO methods have no need region proposal. Hence YOLO methods are
faster than R-CNN methods. Faster R-CNN is an algorithm that has emerged by replacing
the region search used in R-CNN with the object detection algorithm. [35][36][37][38]

Bilel Benjdira and his friends, in their research comparing YOLOV3 and faster-
RCNN, found that both algorithms outperform high accuracy, but YOLOV3 outperforms

more sensitive results. In addition, YOLOv3 has faster results in the processing time. [39]

After the literature survey, it was decided to use the YOLOV3 network in this study
due to the advantages of high precision performance, success of small object detection and
fast performance of YOLOV3.

2.2. YOLOV3 Architecture

In 2016, Joseph Redmon presented a different approach with the YOLO algorithm.
YOLOv3 is one of the state-of-art and sensitive algorithms of these deep learning techniques.
Unlike CNN algorithms developed with regional approaches, YOLO (You Only Look Once)
algorithm passes the image once through a fully convolutional neural network (FCNN). This

approach makes the YOLO algorithm real-time and faster than others.[40]

In 2018, Joseph Redmon and Ali Farhadi presented YOLO version 3. Yolov3's
approach for the object detection is different from other versions. It accepts the object
detection process is a regression case. YOLOv3 use just one feed-forward CNN. YOLOv3
use just one feed-forward CNN. It directly estimates box offsets and probabilities. Thus, it

achieves all the processes required for end-to-end detection in a single network. [41]
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YOLOV3’s detection processes are summarized:
e Dividing the input image according to S x S grid cell:
All grid cells are responsible for detecting that an object's center falls off its own cell.
e Predicting B bounding boxes and scores of confidences for those boxes.
e Obtaining with confidence scores for object detecting:
Confidence is defined in 2.1
Confidence} = Pr;;(Object) x IOULUL (2.1)
Pr,pjece= Function of the object
i = ith grid cell
j = jth bounding box
IOU = Intersection over union
Truth = Ground truth

Pred = Predicted box

The confidence score should be zero when the cell does not contain any object. The

confidence score should be one when the cell contains an object.

e YOLOV3's method uses to calculate a part of loss function, truth objectness scores
and binary cross-entropy predicted objectness scores. It is expressed as equation
2.3.

B - ) | (22)
Br= ) Y wiiCllog(¢)) = (1= EDlog1 =)

i=0 j=0
S2 - Grid cells numbers

B= Bounding box numbers
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Cij = Predicted objectness score

Cij = Truth objectness score

e Detecting and localization of an object:

Bounding box position and dimension calculations are related to following parameters

which are t,, t,, t,, t, . Width, height and x and y coordinate of bounding box

v

calculations as shown in Figure 2.2.1. The box’s x and y coordinates are by, b,

respectively. The box’s width and height values are b,,,, by, respectively.

CX
Py
C FEEEE N EEEEEEEEEEEREN
Y . .
. b, .
o(t) : b =o(tD+c,
Pra | b, MI lE b=o(t)+c
: o(t) : b=p,e"
: : b=p,e"

Figure 2.2.1. YOLOv3 Bounding Box Calculations.

e The ground truth box’s parameters are g,,, gn, g.g, and truth values can be

expressed as follows:

o(ty) = gx— ¢« (2.3)
o(ty) = gy— ¢ (2.4)
tw = 10g(gw/pw) (2.5)
tn=10g(gn/pn) (2.6)

e YOLOvV3 method uses sum of the square error loss for coordinate estimation.
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Er= ) ) Wi L)) — o@D +o(t,)] = a(t,)])]

i=0 j=0

2 g | | | (2.7)
+ Zwi(;'b][(a(tw){ —o(tw)))?
i=0 j=0

+o(t)! — ot

YOLOvV3 uses 53 layered Dark net-53 architecture which is presented in Table 2.2.1.
This network was created with the hybrid approach of the Darknet-19 network and the new
network. Darknet-53 uses sequential 3x3 and 1x1 convolution layers, but there are some
shortcut links. Darknet-53 is enormous, larger, efficient, and faster when compared with

other backbones. One of the improvements in the use of the feature pyramid networks.
YOLOV3 is more effective because of:
e Faster than previous real time object detection algorithms
e High accurate estimations from a single network
YOLOV3 is different from the other versions. These differences are:
e Using binary cross entropy
Instead of the mean square error, YOLOV3 uses binary cross entropy
e Bounding box prediction

YOLOv3 uses diverse bounding box prediction. It uses objectness score and
threshold.

e Pyramid networks

One of the improvements is the use of feature pyramid networks. This improvement

is caused to the change for tensor dimensions.
e Darknet-53

3x3 and 1x1 CNN layers are used. Darknet 53 allows to obtain a faster and more

accurate architecture.
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To sum up, YOLOV3 is a good option for an orientation (attitude) determination

algorithm with star trackers with both speed and accurate.

Table 2.2.1. Darknet-53 Network Architecture.

Type Filters Size Chtput
Convolutional 32 ix3 236 x 336
Convelutional 64 Ix3r2 128 =128
Convelutional 32 1x1
Convolutional 64 ix3

Eesidual 128 x 123
Convolutional 128 ix3f2 64 x 64
Convelutional 64 1x1
Convolutional 123 ix3

Fesidual 64 x 64
Convolutional 236 ix3iz 2x32
Convelutional 128 1x1
Convolutional 236 ix3

Fesidual 32x32
Convolutional 312 ix3iz l6x 16
Convolutional 256 1x1
Convelutional 512 ix3

Eezidual 16x 16
Convelutional 512 3Ix3/2 ix4§
Convolutional 312 1x1
Convelutional 1024 ix3

Eezidual Ex8§

Axepool Global

Comnected 1000

Softmax
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2.3. Star Detection and Localizing Algorithm Model for CubeSats

The proposed algorithm is a star tracker attitude determination model for the
CubeSats by artificial intelligence and robustness. This algorithm is developed by using the
Google Colab environment. Google Colab’s Pro extension used to access to GPU easily for
the training process and, code was developed codes by using Python language. The algorithm
is implemented with single axis positioning. The algorithm basically consists of two main

parts. These are:
e First Part: Star detection and star localizing algorithm with YOLOv3
e Second Part: Tracking / Smoothing algorithm with the Kalman filter.

This subtitle focus on the first part of algorithm which is star detection and star
localizing step. Figure 2.3.1 represents the architecture of the algorithm.
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*

Input star image

SxS grid on input star image

Class probability map Bounding boxes + confidence

Successful detection of the star

Figure 2.3.1. Star detection with YOLOV3 architecture.

Figure 2.3.2 represents the YOLOV3 block diagram of the algorithm. Star dataset was
divided three parts. These are training dataset, validation dataset, and test dataset. After the
splitting datasets, stars are labelling on these images by using Labellmg tool. Then, YOLOv3

pre-training approach give train models. After, obtaining the training model, using test
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images star detection and localization results obtained. In the subtitles of this section, it is

aimed to explain these steps of the first part of the algorithm.

Training
Dataset

v_Y

YOLOv3
Network
4?{ Classification
v
4){ Test Dataset I >| Train Model
‘|—>{ Localization ‘

Validation
Dataset

Dataset »

Figure 2.3.2. YOLOv3 Star Classification and Localization.

2.3.1. Preparing Star Dataset

Preparing a dataset is the most important step because of the effect on the training model.
While preparing or collecting the dataset, all images must have the same extension (for
example, all of them should be .jpg, .jpeg, .png) so that the training model can be created
properly. All images were saved with .png extension. In this training process, simulated
images were used. This dataset artificially consists of equally spaced shooting star images
between 0 and +875 pixels. The dataset consists of a total of 501 images (between -255 and
+255) and shooting star images at 1.75-pixel intervals (calculated by rounding as there will
be no decimal pixels). First, middle, and final images are presented in Table 2.3.1.1. Images
have a star, and this star is moving on single axis. And also, Figure 2.3.1.1 represents the

shooting star in a single axis.
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Table 2.3.1.1. Moving a star from dataset.

1% image

256" image

501" image




Figure 2.3.1.1. Moving on a single line star.

After the dataset is collected, the next step is to divide the dataset into train, validation,

and test datasets. While preparing validation and train datasets, the Pareto principle was

taken as a reference. This principle is known as the 80/20 rule. According to this principle,

80 percent of the data set should be used for training and 20 percent for test. For validation

set divide again training set, now 80 percent of them train and rest of them validation. In this

model, 500 images are used for training. These images are separated train and validation.

80% (400 images) of the images are used for training and 20% (100 images) of the images

are used for test. After this, again splitting 401 images, 321 images train, 80 images for

validation part are selected from the dataset randomly. The training and validation numbers

and percentages of the images used are shown in Table 2.3.1.2 and Table 2.3.1.3

respectively. [42]

Table 2.3.1.2. Dataset separation using by Pareto Principle.

Number of Total Images

Training Set

Validation Set

Test Set

501

321

80

100
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Table 2.3.1.3. Star Dataset Splitting Ratios.

Star Dataset Splitting

m Train Dataset = Validation Dataset = Test Dataset

The three main steps performed in this section are as follows. The following steps
summarize the preparation dataset process:

e Collecting dataset with the same file extension

e Collecting/creating enough images
Separating train, validation, and test from the dataset

2.3.2. Annotating in Pascal VOC Format

Pascal VOC and Microsoft COCO annotating formats are the most popular formats.
In this model, images are annotated using Pascal VOC format because the libraries (eg.
imageAl) used in this algorithm and YOLOv3 algorithm are compatible with the Pascal
VOC format. After the preparing dataset, the star object was annotated with a bounding box

for each image.

The Labellmg which is popular for annotation tool was used to add annotations
according to Pascal VOC format. Labellmg allows for tagging object bounding boxes on
images and it supports formats of YOLO and CreateML. Figure 2.3.2.1 represents the
Labellmg tool labelling star image with box. After tagging objects of the images XML and
image extension files are generated. These files are created both train and validation part.
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When completing this step, dataset is ready for the create training models. Datasets were
created as follows:

Train dataset:

>>Star 1.png, Star 5.png, Star 15.png...etc. (images)

>> Star_1.xml, Star_5. xml, Star_15. xml ...etc. (annotations)
Validation dataset:

>>Star 2.png, Star 7.png, Star 10.png...etc. (images)

>> Star_2.xml, Star_7. xml, Star_10. xml ...etc. (annotations)

Cluse eefaie e |
Open o

sl e

o

imiolo

Figure 2.3.2.1. Labellmg Star Annotating.

2.3.3. Star Detection Model Training

Transfer learning is a widely used process where models trained for a purpose on
large datasets can be reused for training and testing on small datasets for some purpose. The
transfer learning (pre-trained model using) method is widely used because of the advantages
it provides in computer vision. The most important of these advantages is not having to

obtain a new model starting from scratch with the model trained on a large dataset that has
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been trained before. Thanks to this advantage, the performance of the algorithm directly
increases. Also saving time is another important benefit from this advantage supplied. While
developing this algorithm, the transfer learning method was used. In this algorithm ImageAl
is used, and this library allows to this method. The YOLOv3 pre-trained model is embedded
in the code and there is no need to rearrange parameters such as weights. Therefore, this

method improves accuracy and saves algorithm development time. [43][44][45]
While model training used parameters as follows:
e Batch_Size: 4
e Num_experiments: 100 (number of iterating)
e Object array: “Star”

e Pretrained_model: Importing pretrained model

2.3.4. Detecting Stars and Their Locations

After the training models (which are obtained from the training process), evaluation
the appropriate model is selected with respect to the mean average precision (mAP) and loss
values. Among the models produced in the previous step, the model with a high mAP value
and low loss value is usually the model that will get the most accurate result. However, since
it is possible to see a low loss value in cases such as overfitting, the resulting models should
be examined very carefully. The highest mAP value was equal to 0.95, and this model used

for the test images.

When the test images are sent to the model selected according to the mAP and loss
values, the trained model could obtain star detection and the X, y coordinate information of
the stars on the image. This coordinate information is in pixel format. All test images’ stars

and their coordinate information were successfully obtained.
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3. KALMAN FILTER

R.E. Kalman’s famous paper was published in 1960, that is describing self-iterative or
recursive solutions to the problem of discrete-data linear filtering. Since its publication, the
Kalman filter has become a crucial research and application for autonomous and assisted
navigation fields. In this research, developed algorithm’s Kalman Filtering part assists to
obtain more accurate results for star coordinate information. This chapter aimed to the
Kalman Filter basics and smoothing with Kalman Filter.[46] [47]

The Kalman filter provides a mathematical approach to the discrete data linear filtering
problem using the least-squares method. The Kalman filter, which has many applications, is
very successful in predicting the response of the system for the past, present and future, even
if the characteristics of the system are not known precisely. In real life, since the measured
data from any sensor does not reflect the real value because of the noise or other unwanted
situations, it is aimed to approximate the measured value to the real value by using the
Kalman filter. In short, the Kalman filter is an iterative set of computations with feedback
that estimates metrics.

The application area of the Kalman filter is quite wide, some of them are as follows.
« Tracking objects
« Navigation
» Sensor fusion

Econometrics

3.1. The Discrete Kalman Filter Algorithm

The Kalman filter predicts a process using a feedback control form. The filter predicts
a process state within a given time frame and then continues to feed on noisy data from the

sensors. Therefore, Kalman filter equations can be examined into two parts as follows:
e Time update equations
e Measurement update equations

The time update equations forward the covariance estimates error and current state to

obtain an a priori estimate from time k to k+1 time steps. Thus, it tries to catch the most
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accurate prediction possible. For clarity, we can also call measurement update equations
corrective equations. Measurement update equations provide feedback. Incorporates the new
measurement into priori estimate to obtain a more accurate posteriori estimate. For clarity,
we can also call the Time update equations as predictive equations. In fact, the final
estimation algorithm is very similar to the estimator and corrective algorithm used for

solving a numerical problem, as shown in Figure 3.1.1.

Time Update
("Predict'")

Measurement Update
("Correct")

Figure 3.1.1. Continuing Discrete Kalman Filter Cycle.

The time update predicts the current state estimate. The measurement update

specifies the predicted estimate with an actual measurement at that time.
Equations specific to time and measurement updates:

Table 3.1. 1. Time Update (Prediction).
Project the state ahead
X4 = AxXy + Buy, (4.1)
Project the error covariance ahead
Py = AP AT + Qp (4.2)

Table 3.1.1 reflects; from k time steps to k+1 steps time update the state and
covariance estimates. A,, B are from the following equation 4.3:

Linear stochastic difference equation at time k+1 and k:

xk+1 = Akxk + Buk + Wk (43)
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Qy. 1s comes from the following equation 4.4:

wy, represents the process noise and v;, represents the measurement noise.

p(w)~N(0,Q) (4.4)
p(v) ~N(O,R) (4.5)

Table 3.1. 2. Measurement Update (Correction).

Compute the Kalman gain

K, = P HT(H, P  HL + Rt (4.6)
Update the error covariance

R = Xp + K(zx — HeXp) 4.7)
Update the error covariance

P, = (I — KxyHy)Py (4.8)

The first step, when measurement update is to calculate the Kalman gain, K. The
second step is to real measure the process to get the z, specified in the equation 4.9 below,
followed by constructing a state estimation of posteriori by including the measurement as in

(4.7). Finally, to find posteriori covariance estimate use equation 4.8 from Table 3.1.2.

Zk = Hkxk + Uk (49)

After each update cycle time and measurement, the process of the Kalman filter
continues to repeat with previous a posteriori estimates to reflect or predict new a priori
estimates. The Kalman filter allows for easier use in practice. Because it works on the past
data and the current data instead of working on all the data. Figure 3.1.2 below represent a

predict and correct flowchart.
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Time Update (‘“Predict™)
(1) Project the state ahead

Xgy1 = AxXg + By
(2) Project the error covariance ahead

Pii1 = AP AT + Qy

Measurement Update (“Correct™)

(1) Compute the Kalman gain
Ky = P HT (Hy P HE + Ry) ™"
(2) Update estimate with measurement z;,
Xy = X + K(zx — HiXy)
(3) Update the error covariance - Initial estimates
Py = (I — KiHy )Py

Figure 3.1.2. Predict and correct flowchart

3.2.Position Estimation Process of Kalman Filter

When detecting the position of a moving object, the Kalman filter combines variables
such as position and velocity parameters to make an estimate of the state. In this section,
Kalman filter integration is explained for constant velocity (i.e., CV model) tracking model
for a moving object. The method described in this section is used for star position detection.
[48]

True state vector for one dimensional tracking:

xe = (xpv)7 (4.9)
x; represents the true position of the tracking object and v, represents the true
velocity of the tracking object. The following equation describes the position according to
CV model:

Xk = PXep—1 + Wy (4.10)

Xy, represents the true state or position at time KT with sampling interval T. w,
represents the process noise with covariance matrix Q. ¢ is expressed below transition
matrix from KT to (k+1)T;
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o= ] (11

The Kalman filter generates the target state prediction based on the dynamic model
described above.

Measurement model expressed as below:

Zy = thk + Vg (412)
Where z; represents the measurement vector and H represents the measurement
matrix, v, represents the noise vector which comes from the measurements with R

covariance matrix.

Position only measurement systems (POM) measure only position information of the
target. Generally, POM structure is used in moving object tracking algorithms. (e.g. radar,
laser and sonar sensors) According to POM, measurement matrix H and covariance matrix

R are expressed as

H= (1,0) (4.13)
R = (B (4.14)

B, represents the variance of errors of position measurement.

Position velocity measured systems (PVM) measure both position and velocity at the

same time. (e.g. pulse Doppler radar) PVM models matrices expressed as:

H-[! 0 (4.15)
R = [%f ;)v] (4.16)

B, represents the variance value of the errors of velocity measurements.
Kalman filter tracking calculate the prediction and estimation as follows:

X = PXp—q (4.16)
X = X + Ki(zi — HXy) (4.17)
“~” denotes the prediction and “” denotes the estimation. Also Kj,, denotes the gain of
Kalman filter. Aim of the kalman gain is minimizing error in the Kalman’s estimations of

position and velocity. Calculation equation of Kalman gain K:

K, = P,H"(HP,H" + R) (4.18)

Covariance matrix of errors P, is:
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Pe= P19 +Q (4.19)
pk = ﬁk - KkHﬁk (420)

3.3. Smoothing Kalman Filter

As mentioned in the previous sections, the Kalman Filter is widely used to minimize
uncertainty. The Kalman filter part of the algorithm was also developed in Google Colab in
Python. In this part, the star x, y coordinate information, which is the output of the YOLOv3
CNN network, is applied as an input to the filter. The Kalman Filter corrected the error
caused by the trained model, smoothed the results, and gave the final coordinate information
for the stars. The matrix information used while developing the Kalman filter algorithm is
given below. We need to estimate the x and y star coordinate information at time k.

e State matrix

Following equation 4.8 represents the state matrix.
X=[X ZXvelocity Y Yvelocity] (4.21)
In the state matrix elements, x and y are position information, x,e;ocity aNd Yyerocity

are velocities of those directions.

e Measurement matrix
The measurement matrix is shown in the equation 4.9
Z=[x Y] (4.22)
e H matrix

100 o] (4.22)

z=Hx=>H=[0 01 0

e “k” represents the current samples and “k-1” represents the previous samples.

System dynamics as follows:

X = Xp—1 +AL Xvelocity 4 (4.23)
Xvelocity, = Xvelocity,_, (4.24)
Vi = Yk-1 T AL Yvelocity,,_, (4.25)
Yvelocity, = Yvelocity, _, (4.26)
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If we write the above 4 matrices as F matrix in the form of the transition matrix, which

is the system dynamics.

X = ka—l (427)
1 1 0 O (4.28)

_ 10 1. 0 O

F= 0 0 1 1

0 0 0 1
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4. RESULTS

The star detection and coordinate estimation algorithm consists of two parts which are
star detection and coordinate estimation using YOLOv3, and smoothing coordinate
information using traditional KF. All codes were developed Google Colab Pro environment
by using Python language.

Firstly, images are created artificially and labeled. Train, validation, and test datasets
are split and .xml and .png files are classified. These images are trained using the transfer
learning method. After the method is applied star dataset, star detected boxes with images
are obtained as represented Figures 4.1, 4.2, 4.3. Also, the network gives the star x, and y

coordinate information in pixel format.

star : 42,308

Figure 4.1. Star detection with YOLOv3 Network.
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star : 18101

¥

Figure 4.2. Star detection with YOLOv3 Network.

Figure 4.3. Star detection with YOLOv3 Network.

Also, multiple star images tested and trained network is %100 percent successful.

These images are represented below in Figure 4.4.
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Figure 4.4. Multiple star detection outputs of YOLOv3 Network.

The algorithm’s second part is smoothing. The star coordinate information, which is
the output of the YOLOvV3 network, is smoother with the Kalman Filter. Kalman Filter
creates estimation by using previous and current star coordinate information. The Kalman
Filter increases the YOLOvV3 output to 99.2 percent, which is the least accurate at 82.5

percent.
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Coordinate values X, y, which are the output of the YOLOV3 network of the star in
the input image, can be detected with approximately 96% accuracy. Up to 99% accuracy
was obtained when Kalman Filter has applied to the output of the YOLOv3 network
coordinate values.

The x and y coordinates information, which are the measured values, the YOLOv3

network output values and the Kalman filter output values, are shown in Figure 4.5 and
Figure 4.6. These graphs obtained 52 x, y coordinate information from star images. By
applying the Kalman filter, the erroneous measurement of the YOLOv3 network, which is
the peak of the graph, was smoothed out, bringing it closer to the true value from 82.5 percent
to 95 percent.
But if the covariance increased 10 times this peak low accurate value 82.5 percent becomes
99.2 percent. This means 10 times covariance for calculations improve the smoothing. The
low-sensitivity measurement referred to as this peak was found only once in 52 images.
Thus, the measurement of the YOLOvV3 network with the lowest accuracy was determined
as 82 percent. However, as mentioned above, the Kalman filter increased the accuracy, and
this coordinate information was made accurate up to 98 percent.

Kalman Filter 1 named filter is implemented with just one times covariance. Kalman
Filter 2 named filter is implemented with 10 times covariance. Following figures 4.5 and 4.6
shows the difference between x-axis values from Kalman Filter 1 and Kalman Filter 2.
Clearly these figures represent the Kalman Filter 2 much smoother than Kalman Filter 1.
Because the measurement values are less reliable for the filter. Same as x-axis values, y-axis
values also much smoother when applied Kalman Filter 2 which represent from Figure 4.7

and Figure 4.8.
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Figure 4.5. Kalman Filter 1 x-axis output.
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Figure 4.6. Kalman Filter 2 x-axis output.
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Figure 4.7. Kalman Filter 1 y-axis output.
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Figure 4.8. Kalman Filter 2 y-axis output.

To represent these results more clearly, Figure 4.9 and Figure 4.10 shows all true,

measured, and filtered values. YOLOv3 network obtains a highly accurate detection

algorithm for these small pixels for the star dataset. Kalman Filter 1 smooths the YOLOvV3’s

obtained results. Kalman Filter 2 improves the smoothing and filtered values are almost the

same as the true values. The true value represents the stars’ true location values, measured x

and y values are YOLOv3 network coordinate information. Filtered x and y values are

smoothed values from the Kalman Filter 1 and Kalman Filter 2.

36




BOO 4

400 4

200 1

600 1 — gercek x

— rEESUred x

measured ¥

=== filtered x

filtered y

gercek y

Figure 4.9. Star x, y Coordinate Values Smoother Kalman Filter 1.

8OO -

GO0 A

400 1

200 1

— reasured x

measured y
=== filtered x
=== filtered v
m— frue X

Figure 4.10. Star x, y Coordinate Values Higher Covariance Kalman Filter 2.
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Figure 4.11 represents the YOLOvV3 network x- axis error graph and Table 4.1

represent the error values and accuracy values.
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Figure 4.11. YOLOvV3 network x- axis error graph.

Table 4.1. YOLOv3 network x-axis estimation accuracy analysis.

Real Star Position CNN estimation Error Accuracy
656 795 139 % 82.5
679 669 -10 %98.5
693 683 -10 %98.5
712 695 -17 %97.6
728 706 -22 %96.7
865.5 831 -34.5 %96

854 851 -3 %99.6
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Figure 4.12 represents the Kalman Filter 1 network x- axis error graph and Table 4.2

represent the error values and accuracy values.
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Figure 4.12. Kalman Filter 1 x- axis error graph.

Table 4.2. Kalman Filter 1 x-axis estimation accuracy analysis.

Real Star Position KF1 estimation Error Accuracy
656 685.9 29.9 %95

679 690.9 11.9 %98.2
693 697.2 4.2 %99.3
712 705.8 -6.2 %99.1
728 717.7 -10.3 %98.5
865.5 847.6 -17.9 %97.9
854 831 -23 %97.3
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Figure 4.13 represents the Kalman Filter 2 network x- axis error graph and Table 4.3

represent the error values and accuracy values.
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Figure 4.13. Kalman Filter 2 x- axis error graph.

Table 4.3. Kalman Filter 2 x-axis estimation accuracy analysis.

Real Star Position KF2 estimation Error Accuracy
656 650.91 -6.91 %99.2
679 668.5 -10.5 %98.4
693 686 -7 %98.9
712 703.3 -8.7 %98.7
728 720.5 -1.5 %98.9
865.5 839.3 -26.2 %96

854 856 2 %99.7
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Figure 4.14. Total error graph for x-axis.

achieves the best results. Especially, when the error peak, Kalman Filter 2 minimizes the
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error considerably.

Figure 4.17 represents the YOLOv3, Kalman Filter 1, and Kalman Filter 2 error

values. Clearly the graph show that Kalman filter minimize the errors. And Kalman Filter 2
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5. CONCLUSION AND FUTURE WORK

In this thesis, star tracking cameras, which are the most reliable attitude prediction
sensors for CubeSats, are discussed. Star detection and star positioning algorithm has been
developed for star trackers. Unlike the algorithms in the literature, state-of-art YOLOv3 and
traditional Kalman filter were applied together. The purpose of the algorithm is to detect a
shooting star on a single axis and find its position in pixels with high accuracy.

First, images of shooting stars in a single axis were obtained artificially. Then, train,
validation, and test datasets were created to train these images. Pareto principle was used
when separating these datasets. The dataset is 501 in total. According to the Pareto principle,
321 trains, 80 validation, and 100 test images were used. These images are labeled according
to Pascal VOC annotation method. The labeled images were trained using the transfer
learning method in the YOLOvV3 network. Among the trained models, the model with the
highest mAP value and the smallest loss value was used. With this model, the star
classification and the position of the star in the image were determined in the images from
the star tracker. Applying the obtained x, and y coordinate information to the classical
Kalman filter, it is aimed to achieve higher accuracy of the YOLOvV3 output.

The YOLOV3 network output has approximately 96 percent accuracy. With the
Kalman filter, this rate reached 99 percent when we increased the covariance value 10 times.
The Kalman Filter applied in the algorithm accepted this system as a linear system and
tracked it assuming that the star was moving at a constant velocity.

In future studies, this proposed YOLOv3 and Kalman filter combined star recognition
algorithm can be used in attitude determination and control applications with real star tracker
images. The Kalman filter part of the algorithm was applied for a linear system. This part

can be replaced with non-linear filters.
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