
 
 

 

  

 
Abstract—In this paper, a new local search metaheuristic is 

proposed for the permutation flow-shop scheduling problem. In 
general, metaheuristics are widely used to solve this problem 
due to its NP-completeness. Although these heuristics are quite 
effective to solve the problem, they suffer from the need to 
optimize parameters. The proposed heuristic, named STLS, has 
a single self-tuning parameter which is calculated and updated 
dynamically based on both the response surface information of 
the problem field and the performance measure of the method 
throughout the search process. Especially, application 
simplicity of the algorithm is attractive for the users. Results of 
the experimental study show that STLS generates high quality 
solutions and outperforms the basic tabu search, simulated 
annealing, and record-to-record travel algorithms which are 
well-known local search based metaheuristics.  

I. INTRODUCTION 
HIS paper deals with the permutation flow-shop 

scheduling problem (PFSP) to minimize makespan 
which generally arises in industrial processes. There are n 
jobs to be processed in the same sequence on m machines. 
Processing time of job i on machine j is represented by tij≥ 0. 
It is assumed that machines can process at most one job at a 
time and the operating sequences of the jobs are the same on 
every machine. The processing of a given job at a machine 
also cannot be interrupted. PFSP with makespan criterion 
can be denoted as F/prmu/Cmax following the notation given 
by Graham et al. [1]. Maximum completion time, Cmax, is the 
time at which the last job in the sequence is completed at the 
last machine, m. The problem is to determine the best 
operating sequence of the jobs which minimizes the 
makespan or Cmax. PFSP is known to be NP-complete for 
more than two machines (Garey et al. [2]). Although a 
number of exact approaches have been suggested (for 
example Johnson [3], Lomnicki [4]), most of the literature in 
the last years recommends the metaheuristic procedures in 
order to obtain near-optimal solutions for the problem. 
Recent reviews of PFSP literature are given by Framinan et 
al. [5], Ruiz and Maroto [6], Hejazi and Saghafian [7]. 
Metaheuristic approaches are generally viewed as effective 
for large sized PFSP in the literature, as they are successful 

 
 

to solve other combinatorial optimization problems.  
Since the metaheuristics are controlled by a set of 

parameters, a typical application of these heuristics requires 
a crucial task known as parameter optimization, parameter 
tuning or parameter setting. A careful selection of the best 
set of parameter values requires either a deep knowledge of 
the problem structure or a lengthy trial-and-error process. 
The best parameter set is usually re-determined before the 
running considering size or input data of the each individual 
problem. Tuning a metaheuristic’s parameters to produce 
robustness and effectiveness is a tedious and time-
consuming process. Adenso-Diaz and Laguna [8] state that 
about 10% of the total time dedicated to designing and 
testing of a new heuristic is spent for development, and the 
remaining 90% is consumed for fine-tuning of parameters.  

An alternative way to tuning parameters before the run is 
to control of these parameters through the run. Heuristics of 
this nature are generally called adaptive, reactive or self-
tuning heuristics. In this paper a modification of local search 
heuristic with a single self-tuning parameter, Ө, is presented. 
Ө is obtained and updated dynamically throughout the 
search process. The effectiveness of the self-tuning local 
search (STLS) heuristic is improved using the response 
surface information which comes from the problem instance 
and the performance measure of the algorithm. The most 
important advantage of STLS is that the algorithm does not 
need additional time and specialization to manage parameter 
optimization. 

The rest of this paper is organized as follows. Section II 
explains the STLS. Implementations of STLS, tabu search 
(TS), simulated annealing (SA), and record-to-record travel 
(RRT) heuristics for PFSP are given in Section III. The 
section of computational study includes the comparison of 
STLS with the TS, SA, and RRT algorithms. Finally, the last 
section presents the conclusions. 

 

II. DESCRIPTION OF STLS 

STLS algorithm starts with any initial solution zX  as a 
current solution and searches the solution space iteratively. 
X represents the vector [x1, x2, …, xn] which corresponds the 
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operating sequence of jobs such that xj is the job placed in j. 
order. At iteration i, a neighbor solution X' selected 
randomly from the neighborhood of the current solution X. 
X' is accepted as the new current solution if the following 
condition is satisfied: 
 

If f(X') ≤ Өf(X) then X ← X' 
 

Here, f(X) is the maximum completion time, Cmax, of the 
current solution X at iteration i. Ө is the self-tuning 
parameter of STLS. The algorithm progresses to the next 
iteration when an acceptable solution is obtained. Otherwise, 
a new neighbor solution is selected randomly from the 
neighborhood. If the total number of rejected neighbors 
reaches the neighborhood size of the current solution, 
⏐N(X)⏐, respect to the moving mechanism under 
consideration, value of Ө is increased using the equation    Ө 
= Ө + α1α2. The sampling of neighbors is implemented with 
replacement to avoid excessive consumption of computer 
memory. Search process around the current solution X is 
repeated to obtain an acceptable neighbor solution. 

Dynamic calculation of parameter Ө is based on two 
criteria: the number of improved solutions obtained during 
the search process and the quality of these solutions relative 
to the initial solution. Hence, the measures given by 
equations 1-2 are introduced, where )(i

bX  is the best 

solution observed until iteration i, zX  is the initial solution, 
C(L(i)) is the number of improved solutions obtained until 
iteration i: 
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C(L(i)) is calculated as C(L(i)) = C(L(i)) + 1, if f(X') < 

)( )(i
bf X  for an accepted neighbor solution X'. STLS 

assumes that f(X) > 0, for the whole solution space. Finally, 
parameter Ө is computed during the search by the equation 
3. In this way, the parameter determine the borders of the 
search region around the current solution X taking into 
account the number of improved solutions and the solution 
quality. During the initial iterations of the algorithm, the 
search is almost random. It is expected that while Ө 
approaches to 1, the search is forced to find better solutions. 
For instance, Figure 1 depicts the decrease of relative 
deviation from the best known solution (RD) accompanied 
by parameter Ө. Furthermore, changing of parameter Ө with 
respect to the number of iterations is shown in Figure 2. As 
seen from the figure, Ө exponentially decreases as the 
number of iterations increases. 
 

Ө = 1 + α1α2             (3) 
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Fig. 1.  Improvement of solution quality according to Ө for a 200n/20m 
PFSP 
 

 
An experimental study is undertaken to show the 

effectiveness of the dynamic calculations of Ө comparing 
with the fixed values for Ө. Three fixed levels, 1.0015, 
1.0025, and 1.0035, which have generated reasonably good 
results in preliminary experiments, are selected for Ө. These 
fixed levels and dynamic calculation of Ө are tested on 
selected three problems from the whole benchmark set of 
Taillard [13]. Table I shows the average deviations from the 
best known solutions over the 10 runs for the test problems. 
As seen from the table dynamic Ө generates higher qualified 
solutions than the fixed Ө values for the each size, except 
fixed value 1.0015. Ө = 1.0015 cause 0.0095 deviation from 
the best known while dynamic Ө yields 0.0101 for 50/20 
sized problem. However, the self-tuning of Ө outperforms 
the manually controlling of Ө according to the average 
results for the all problem sizes. 
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Fig. 2. Changing of Ө according to number of iterations for a 100/20 PFSP 
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III. IMPLEMENTATION 
 

STLS algorithm is compared with some widely used local 
search based metaheuristics: TS (Glover [9]), SA 
(Kirkpatrick et al. [10]), and RRT (Dueck [11]). Details of 
these metaheuristics can be found in the last mentioned 
references. There are also many sophisticated metaheuristics 
proposed in PFSP literature. However, the aim of this study 
is to examine the effectiveness and efficiency of STLS 
relative to the standard versions of TS, SA and RRT 
metaheuristics, since STLS also relies on a simple principle. 
In this study, TS, SA, and RRT algorithms are coded 
sticking to the basic principles proposed by the pioneers 
employing the same neighbor generation mechanism with 
STLS. Thus, they run under the same base line. Basic 
structures and acceptance conditions of STLS, TS, SA, and 
RRT algorithms are defined in the subsection B.  

 

A. Neighbor Generation 
Neighborhood of a solution point X is created using five 

different moving types: Adjacent swap (MAS), general swap 
(MGS), single insertion (MSI), block insertion (MBI) and 
reverse location (MRL). These moving types are the most 
commonly used types of perturbation schemes for 
generating neighbor solutions and an analysis of them can 
be found in Tian et al. [12] for a SA algorithm. The 
definitions of the moves and neighborhood sizes obtained by 
these moves are given in Table II. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE II 
MOVING TYPES AND NEIGHBORHOOD SIZES 

Type Definition Neighborhood size 

MAS 
Nodes xi and xj are interchanged for 

i, j = 1, …, n and abs(i-j) = 1. 
NAS(X) = )1( −n  

MGS 
Nodes xi and xj are interchanged, 

for i, j = 1, …, n and abs(i-j)>1. 
NGS(X) = 

2

)2)(1( −− nn
 

MSI 

Node xi is inserted between nodes xj 

and xj+1, for i = 1, …, n, j = 1, …, n-

1 and abs(i-j)>1. 

NSI(X) = )2)(1( −− nn  

MBI 

A subsequence of nodes from xi to 

xi+b is inserted between nodes xj and 

xj+1, for i = 1, …, n-1-b, j = i+b+1, 

…, n-1 and b = 1, …, n-2. 

 

MRL 

A subsequence of nodes from xi to 

xj is sequenced in the reverse order 

for i, j = 1, …, n and abs(i-j)>1. 

NRL(X) = 
2

)2)(1( −− nn
 

 

B. Structures and Acceptance Conditions of the 
Algorithms 
Implementation steps of STLS algorithm are given in 

Figure 3. At each iteration of the algorithm, a subset N′(X: 
X(s) , s =1, …, 5), is generated by applying the five different 
moving types to the current solution X. The best one, X', 
among these neighbors with best objective value is then 
selected as a new current solution if it satisfies the 
acceptance condition “f(X') ≤ Өf(X)”, otherwise a new 
subset N′(X) is generated randomly. 

Steps of TS are shown in Figure 4. TS uses a short-term 
memory with size tt. If the current solution has been created 
by adjoining job p and r, moves which disarrange this 
successive subsequence of the job p and r are classified as 
tabu during next tt iterations. At each iteration, the subset 
N′(X: X(s) , s =1, …, 5) is obtained and the best solution in 
the subset which created using a non-tabu move, X', is 
added to a sampling list, SL, with size ss. If the N′ entirely 
contains tabu moves, then a new N′ is generated until SL is 
filled with ss solutions. However, the aspiration criterion 
removes the tabu condition when any move yields a better 
solution than the best solution obtained so far. The best 
solution, X'', in the sampling list is accepted as the new 
current solution. 

 
 
 
 

TABLE I 
AVERAGE DEVIATION FROM THE BEST KNOWN USING FIXED AND 

DYNAMIC θ 

n/m 
Ө 

1.0015 1.0025 1.0035 Dynamic 

50/20 0.0095 0.0276 0.0374 0.0101 

100/20 0.0254 0.0371 0.0427 0.0016 

200/20 0.0328 0.0387 0.0425 0.0018 

Average 0.0226 0.0345 0.0409 0.0045 
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i ← 1, C(L(i)) ← 1 
Randomly create initial solution X0 ← zX  

X ← zX ; z
i

b XX ←)(  
Repeat 

)(

)
)(

(
1

zf

i
bf

X

X
←α ; 

i

i
)

)(
L(C

2 ←α  

Ө ← 1 + α1α2  
i ← i +1; r ← 0 
Repeat 

Select a neighbor solution X' randomly from the N′(X)  
r ← r + 1 
if r = ⏐N(X)⏐ then Ө ← Ө + α1α2 

Until f(X') ≤ Өf(X) 

If f(X') < ))(
(

i
bf X  then C(L(i)) ← C(L(i)) + 1, 

XX ′←
)(i

b  

X ← X' 
Until Ө → 1 

Fig. 3.  Steps of STLS 
 

Randomly create initial solution, zX  

X ← zX ; z
i

b XX ←)(  
Start with empty short-term memory 
i ← 0 
Repeat 
  Repeat 
     Create SL list, f(X'k), k = 1,..., ss 
     Select X'' with best f(X'k) 
     If X'' is created by nontabu moves 
              or f(X'') < ))(

(
i

bf X  then X ← X'' 
      Otherwise select another X'' from SL list 
  Until an acceptable solution is found 
  If f(X) < ))(

(
i

bf X then ))(
(

i
bf X ← f(X), )(i

bX  ← X 
  Update the short term memory 
  i ← i +1 
Until a termination condition is met 

Fig. 4.  Steps of TS 

 
The SA algorithm is given in Figure 5. The best solution, 

X', in the N′(X) is recorded as the current solution, if f(X') < 

f(X) or U(0,1) < 
[ ]

T
XfXf

e
)()( ′−

 is satisfied, where U(0,1) 
represents a uniformly generated number between 0 and 1. T 
is a control parameter. The algorithm proceeds by 
attempting a certain number of neighborhood moves, M, at 
each temperature, while T is gradually dropped in the ratio 
of α.  

 
 

 
Randomly create initial solution, zX  

X ← zX ; z
i

b XX ←)(  
Select initial temperature, Tb, T ← Tb 
Initiated the number of trial neighbors, m ← 0 
Repeat 
    Select a neighbor solution X' randomly from the N′(X) 
    m ← m +1 

    If f(X') < f(X) or U(0,1) < 
[ ]

T
XfXf

e
)()( ′−

 then X ← X' 

    If f(X) < ))(
(

i
bf X then ))(

(
i

bf X ← f(X), )(i
bX  ← X  

    If m ≥ M then T ← αT, m ← 0 
Until a termination condition is met 

Fig. 5.  Steps of SA 

 

Figure 6 represents the steps of RRT algorithm. At each 
iteration of RRT, the subset N′(X) is generated and the best, 
X', is then selected as the new current solution if it satisfies 

the acceptance condition “f(X') < ))(( i
bf X  + D”, otherwise 

a new subset N′(X) is generated randomly.  
 
Randomly create initial solution, zX  

X ← zX ; z
i

b XX ←)(  
Select a deviation parameter, D 
Repeat 

   Select a neighbor solution X' randomly from the N′(X) 

   If  f(X') < )( )(i
bf X  + D then X ← X' 

   If f(X) < )( )(i
bf X then )( )(i

bf X ← f(X), )(i
bX  ← X  

Until a termination condition is met 

Fig. 6.  Steps of RRT 

 

IV. COMPUTATIONAL STUDY 
STLS algorithm is compared with TS, SA, and RRT 

algorithms on the benchmarking problems by Taillard [13]. 
TS, SA, and RRT require the parameter tuning. Parameter 
selection studies for these algorithms are given in the next 
subsection. 

 

A. Parameter Selection 
The basic TS, SA, and RRT algorithms have parameter 

sets which shown in Table III. These parameter sets must be 
tuned for each algorithm before the run. 3k factorial 
experiments designed for this purpose, where k is the 
number of parameters of the related algorithm (k is equal to 
2, 3, and 1 for TS, SA, and RRT, respectively). Table III 
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also shows the selected parameter levels based on pre-
examinations for the factorial designs. Three separate 
factorial designs were carried out for the each algorithm 
taking into account the same statistical method. The 
algorithm under consideration was run 5 times for each of 
the parameter combinations and then an analysis of variance 
using confidence level as 95% was performed. Results of the 
statistical analysis show that the parameters are statistically 
significant and solution quality of the related algorithm is 
influenced by the parameter levels. Consequently, the best 
parameter sets which cause the best solution quality are 
selected as given in Table IV.  
 

 
 

 
 
STLS algorithm has a single parameter Ө and this 

parameter is tuned throughout the run, as explained before. 
STLS is distinguished from the other algorithms since it 
does not need any parameter optimization effort.  

 

B. Comparison Results 
30 particular hard instances of 3 different sizes are 

selected from the whole benchmark set of Taillard [13], 
since global optima are known for the smaller instances. A 
sample of 10 instances is provided for each of 50/20, 
100/20, and 200/20 (n/m) sizes. 

STLS, TS, SA, and RRT algorithms were executed 20 
times on a Pentium IV/1000-512 RAM computer. All the 
algorithms were terminated when the number of searched 
solutions reaches the same maximum level. Following 
performance measures were obtained at the end of this 
experimental study: 

 

Relative Deviation: 20,,1 K=
−

= j
O

OO
RD B
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Where, A

jO  is the objective value of the considered 

algorithm obtained from replication j. BO  is the best known 
objective value which taken from [14]. 

Best Relative Deviation: BRD = ( )jRD
j

min  

Average Relative Deviation: ARD = 
20

∑
j jRD

 

Coefficient of Variation: CV = 
[ ]

ARD

ARDRD
j j 20

1
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∑ −
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Average Run Time in Minutes: ART =
20

∑
j jRuntime

 

Performances of the algorithms are displayed in Table V. 
As seen from the table, STLS algorithm generates lower 
ARD and BRD values than the other algorithms for the each 
problem size, except the size 50/20. RRT yields better 
solution quality than STLS for this size in terms of ARD. In 
the average case, the solution quality of RRT algorithm is 
close to performance of STLS. CV values of the all 
algorithms are found as close to each other. However all the 
algorithms run considering the same maximum level of 
searched solutions, their average run times are found 
different from each other. TS is the slowest algorithm as 
well as it has the worst solution quality. The sampling list of 
TS must be fielded by non-tabu solutions as expressed in 
Section III. This situation causes the slowest average run 
time for TS. ART value of RRT is obtained higher than 
STLS only 2.64 minutes. This difference arises from the 
change in the acceptance conditions of STLS and RRT. 
While the acceptance condition of RRT is based on the 

objective value of best solution, )( )(i
bf X , this condition 

relies on the objective value of current solution, f(X), for 
STLS, as explained in Section III. On the other hand, SA 
algorithm replaces any trial solution with the current 
solution if the trial satisfies the acceptance condition of SA 
and the algorithm proceeds to the next iteration even the trial 
solution is not accepted. However, STLS, TS, and RRT 
algorithms force the search to find an acceptable solution. 
Therefore, SA is found as the fastest algorithm as seen from 
Table V. Despite the fact that SA has minimum ART, it 
should be recalled that parameter optimization of SA 
consumed a certain amount of computer times at the 
beginning of the study. Table VI also shows the absolute 
BRD and ARD differences between STLS and the other 
algorithms. Accordingly, STLS algorithm generates 0.0214, 
0.0074, and 0.0022 less average BRD values than TS, SA, 
and RRT algorithms, respectively. 

Figure 7 shows convergences of the algorithms for a 
100/20 sized PFSP. STLS converges to higher quality 
solutions searching more number of solutions than the other 
algorithms search. 
 
 
 

TABLE IV 
SELECTED PARAMETER SETS FOR TS, SA AND RRT 

TS SA RRT 
tt ss T M α D 

⎣ ⎦n5.1  4n 0.5n 20n 0.96 15 

TABLE III 
PARAMETERS AND SELECTED LEVELS FOR TS, SA AND RRT 

Levels TS SA RRT 
 tt ss T M α D 

-1 ⎣ ⎦n  n 0.5n 5n 0.90 15 

0 ⎣ ⎦n5.1  2n n 10n 0.93 20 

1 ⎣ ⎦n2  4n 2n 20n 0.96 25 
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V. CONCLUSION 
 

This paper presents a modified local search algorithm 
with a single self-tuning parameter for PFSP. The self-
tuning parameter of the STLS algorithm is obtained and 
updated dynamically throughout the search process to 
improve the effectiveness of the algorithm. The most 
important advantage of STLS is that the algorithm does not 
need additional computational efforts for parameter 
optimization. This simplicity enables the users to employ the 
algorithm for solving of different PFSP cases easily. 

STLS also provides high quality solutions to the well-
known benchmark problems when compared with the basic 
forms of TS, SA, and RRT algorithms. Furthermore, 
obtained solutions by STLS solely deviate 0.87% from the 
best-known solutions which are generally generated by 
sophisticated metaheuristics in the PFSP literature. 

Improvements on STLS to obtain higher quality solutions 
to PFSP spending less run time will be examined in the 
future study. 
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Fig. 7.  Convergences of the algorithms for a 100/20 PFSP 

Authorized licensed use limited to: ULAKBIM UASL - BASKENT UNIVERSITESI. Downloaded on April 12,2023 at 07:24:25 UTC from IEEE Xplore.  Restrictions apply. 


