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ABSTRACT
Current vision-based displacement measurement methods have limitations such as being in need of
manual targets and parameter adjustment, and significant user involvement to reach the desired
result. This study proposes a novel structural displacement measurement method using deep learning-
based full field optical flow methods. The performance of the proposed method is verified via a
laboratory experiment conducted on a grandstand structure with a comparative study, where the
same data samples are analysed with a commonly used vision-based method, and a displacement sen-
sor measurement is used as the ground truth. Statistical analysis of the comparative results show that
the proposed method gives higher accuracy than the traditional optical flow algorithm and shows
consistent results in compliance with displacement sensor measurements. Image collection, tracking,
and non-uniform sampling are investigated in the experimental data and suggestions are made to
obtain more accurate displacement measurements. A field-validation on a footbridge showed that the
measurement error induced by the camera motion is mitigated by a camera motion subtraction pro-
cedure. The proposed method has good potential to be applied by structural engineers, who have lit-
tle or no experience in computer vision and image processing, to do vision-based displacement
measurements.
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1. Introduction

Displacement is a critical indicator for structural perform-
ance evaluation and health condition assessment of infra-
structure. Static and dynamic characteristics of structures
such as bridge load capacity (Lee, Cho, & Shinozuka, 2006;
Ojio, Carey, O’Brien, Doherty, & Taylor, 2016), bridge
deflections (Moreu et al., 2016) and deformation profiles
(Xu, Brownjohn, & Kong, 2018), load distribution (Fuchs,
Washer, Chase, & Moore, 2004), load input information,
unit influence line (UIL) and unit influence surface (UIS)
(Khuc & Catbas, 2018), modal frequency and shape (Chen,
Logan, Avitabile, & Dodson, 2019; Chen, Zhang, & Chen,
2014; Chen, Zhang, Zhang, & Zheng, 2015; Dong, Celik, &
Catbas, 2018; Dong, Ye, & Jin, 2018; Yang, Dorn, Mancini,
Talken, Nagarajaiah, et al., 2017; Yoon, Elanwar, Choi,
Golparvar-Fard, & Spencer, 2016) can be extracted from dis-
placement data. Currently, displacement measurement is still
a difficult task in conventional structural health monitoring
(SHM) (Catbas, Dong, Celik, & Khuc, 2018).

Ye, Yi, Dong, Liu, and Bai (2015) summarised the cur-
rent displacement measurement methods in the field of
SHM, including: (1) contact type: linear variable differential
transformers (LVDT), double integration of recorded accel-
eration data, displacement derivation from the strain-deflec-
tion relationship; and (2) non-contact type: global
positioning systems (GPS) and integration of data from

Laser Doppler Vibrometers (LDV). Non-contact type dis-
placement methods do not need a reference level, and do
not need the access to the measured structures and can save
on road closures, which are key advantages of
this approach.

Ye et al. (2015) also indicated the limitation of conven-
tional non-contact type methods: (1) GPS has low accuracy
and sampling rate; and (2) LDV has high cost. A total sta-
tion is also a non-contact displacement measurement tool.
However, the use of total station is unsuitable for bridge
monitoring (da Silva, Iba~nez, & Poleszuk, 2018) due to diffi-
culties of the installations of control points and continuous
automatic monitoring at high frequency. In order to achieve
desired continuous measurement, additional equipment has
to be added to the original total station (Ehrhart &
Lienhart, 2017; Omidalizarandi, Kargoll, Paffenholz, &
Neumann, 2018). Extracting displacement measurements
from image sequences has become a popular research topic
in various applications of civil engineering (Feng & Feng,
2015, 2016; Feng, Fukuda, Feng, & Mizuta, 2015; Pan, Qian,
Xie, & Asundi, 2009) since the manufacture of advanced
cameras improved and computer vision techniques pro-
gressed. The advantages of non-contact, long-distance, high
precision, low cost and less time-consuming measurement
capabilities has caused vision-based displacement methods
to get increasing attention from the community of structural

CONTACT F. Necati Catbas catbas@ucf.edu
� 2019 Informa UK Limited, trading as Taylor & Francis Group

STRUCTURE AND INFRASTRUCTURE ENGINEERING
2020, VOL. 16, NO. 1, 51–71
https://doi.org/10.1080/15732479.2019.1650078

http://crossmark.crossref.org/dialog/?doi=10.1080/15732479.2019.1650078&domain=pdf&date_stamp=2019-10-08
http://www.tandfonline.com


health monitoring with the potential of becoming an alter-
native to the conventional displacement measurement meth-
ods in SHM as well as to infrastructure inspections (Chen,
Adams, Sun, Bell, & B€uy€uk€ozt€urk, 2018; Khuc & Catbas,
2017; Luo & Feng, 2018; O’Byrne et al., 2015; Wu, Casciati,
& Casciati, 2014; Xu & Brownjohn, 2018; Ye, Dong, &
Liu, 2016a).

In general, current vision-based displacement measure-
ment methods are divided into five categories: (1) image
correlation based template matching (Feng & Feng, 2016;
Lava, Cooreman, Coppieters, De Strycker, & Debruyne,
2009; Pan, Tian, & Song, 2016; Sutton, Yan, Tiwari,
Schreier, & Orteu, 2008; Ye, Dong, & Liu, 2016b), (2) colour
based template matching (Ye, Dong, & Liu, 2016c), (3) key
point matching (Khuc & Catbas, 2016, 2017; Lydon et al.,
2019), (4) Lucas-Kanade optical flow estimation at key
points (Celik, Dong, & Catbas, 2018a, 2018b; Dong, Celik,
et al., 2018; Lydon et al., 2018; Yoon et al., 2016; Yoon,
Shin, & Spencer, 2018) and (5) full field optical flow estima-
tion (Celik et al., 2018a, 2018b; Chen et al., 2015; Khaloo &
Lattanzi, 2017).

Image correlation-based template matching is the most
popular (Chen, Joffre, & Avitabile, 2018; Zhong, He, & Li,
2017; Zhong, Shao, & Quan, 2018; Zhong & Quan, 2017,
2018). However, it is sensitive to changes in shading, illu-
mination and background condition, especially when used
in field applications (Xu & Brownjohn, 2018). To improve
the measurement performance, manual light sources or tar-
gets are designed to be fixed on the structures and then
tracked. Ye and Dong (Dong, Ye, et al., 2018; Dong, Ye, &
Liu, 2015; Ye, Dong, et al., 2016c, 2016b; Ye, Yi, Dong, &
Liu, 2016) installed light emitting diode (LED) and QR
(quick response) codes on structures to improve the texture
contrast of the visual tracking area and tried to eliminate
the influence of illumination changes.

Tian and Pan (2016) combined the use of LED targets
and a coupled bandpass optical filter to mitigate the ambi-
ent light interference. Colour based template matching is
not robust to colour change and the application is limited
to the close-range displacement measurements. For long dis-
tances, the colour condition of the measurement area could
easily be affected by the light and shading, which makes it
hard to get the right measurement results. To improve the
measurement performance, artificial targets with specific
colours could be utilised. Key point matching is a non-target
method which calculates the displacement by averaging
location change of the robust key points extracted from
images. The method relies on calculating the similarities of
the descriptors of key points in consecutive images based on
statistical distance. Once similar key point pairs are recog-
nised, the locations are confirmed to be the continuation of
the former motion.

Generally, the key points may have robust properties
such as being invariant to shading, illumination change, and
scale. The most popular key points are Harris corner
(Harris & Stephens, 1988), Shi-Tamasi corner (Shi &
Tomasi, 1994), Scale-Invariant Feature Transform (Lowe,
2004) (SIFT) feature points and Speeded-Up Robust

Features (SURF) (Bay, Ess, Tuytelaars, & Van Gool, 2008).
The performance of key point matching methods is highly
dependent on the saliency of the texture of the measure-
ment surface. The number of key point extractions from a
measurement area of an image is not easy to decide and it
has been an open question as to how many key points
should be extracted for displacement measurement to
achieve the best performance. Lucas-Kanade optical flow is
a sparse flow calculation algorithm and is usually combined
with key points to do visual tracking. This displacement
measurement methodology involves similar limitations as
the key point matching does. Besides, the ‘small motion’
assumption of optical flow restricts its application for large
structural deflections (Dong, Celik, et al., 2018) although a
pyramid method is used to refine the displacement evalu-
ation in large displacement cases.

Full field optical flow can calculate the displacement vec-
tor of each pixel of images and give the displacement infor-
mation of the entire structure. Classical full field optical
flow estimation algorithms (Sun, Roth, & Black, 2010) origi-
nated from the core work of Horn and Schunck (1981).
These algorithms are derived from variational methods
which are based on the gradient change in images and need
filters to smooth the motion in images. They are adversely
affected by illumination change and give inaccurate flow
estimation at the motion boundaries.

A phase-based optical flow algorithm is another method
implemented into some structural displacement measure-
ment problems (Chen et al., 2015; Yang, Dorn, Mancini,
Talken, Kenyon, et al., 2017; Yang et al., 2018), but the
applications are limited to those cases without background
clutter. Parameters in these algorithms have to be adjusted
to accommodate the differences in applications and it is too
complicated for practical use. Moreover, full field optical
flow calculation is a heavy task that needs longer computa-
tion time, which makes it unsuitable for continuous struc-
tural displacement measurement, especially for real time
monitoring. Detailed comparisons can be found in (Dong,
Celik, et al., 2018).

In this study, a novel structural displacement measure-
ment method using deep learning based full field optical
flow is proposed. A general procedure for vision-based dis-
placement system is presented and the planar homography
matrix is applied for camera calibration. By implementing a
pre-trained deep neural network for optical flow calculation,
i.e. FlowNet2, the full field optical flow is obtained, and the
displacement of the measurement region is calculated by
using a mean kernel or Gaussian kernel. The proposed
method does not need manual target and can be operated
with less human participation than the key point matching,
Lucas-Kanade optical flow with key points and classical full
field optical methods. Image collection strategies, tracking
strategies in image sequences, non-uniform image sampling
and camera motion problems are also discussed in this
paper. Useful strategies are identified to address the prob-
lems that could occur in practical application. Laboratory
experiments on a grandstand structure and field
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experiments on a footbridge are conducted to verify the
feasibility of the proposed method.

2. Methodology and system development

2.1. General procedure for vision-based displacement
measurement system

Figure 1 illustrates the flowchart for the proposed full field
structural displacement measurement method. In the first
step, the camera is calibrated to obtain the relationship
between the image coordinates and the real-world coordi-
nates, i.e. to find how many physical units (e.g. millimetres)
in the real world represent one pixel in the image. In the
second step, image data from the structure in question are
collected and are transferred to the next step for real time
or post processing. In the third step, optical flow algorithms
are implemented to do visual tracking and calculate the full
field structural motion, thereby obtaining the motion vector
at each pixel of the image.

In the fourth step, the false structural motion induced by
the camera vibration is mitigated by subtracting the motion
of the static parts in the image. In the last step, the full field
structural displacement is obtained by converting the dis-
placement in pixels to the displacement in physical units. In
the flowchart in Figure 1, the three steps: camera calibra-
tion, full field optical flow estimation and mitigation of
camera vibration are crucial as they directly affect the meas-
urement accuracy. Each step will be introduced in
detail below.

2.2. Camera calibration

During digital recording, three-dimensional (3D) objects in
the real world are projected onto the image plane (two-
dimensional, 2D) of the camera. The camera calibration is
to estimate the projection process. In research on vision-
based structural displacement measurement, there are three
main methods used frequently(Xu et al., 2018): scale factor,
full projection matrix and the planar homography matrix.
Scale factor is calculated as the ratio of the real world object
dimension to the image dimension (Ye, Dong, et al., 2016b),
or the ratio of the distance from the camera to measure-
ment target and the focal length (Khuc & Catbas, 2017),
when the axis of camera and lens is perpendicular to the
motion plane.

If the axis of the camera and lens are not perpendicular
to the motion plane, the scale factor has to be modified by
the camera angle to the motion plane (Feng, Feng, Ozer, &
Fukuda, 2015) and the scale factors in the vertical and hori-
zontal directions are calculated separately. When multiple
targets are located in the field of view with different depth,

the scale factors should be considered separately (Dong,
Celik, et al., 2018).

If a scale factor is to be applied in vision-based displace-
ment measurement systems, the assumption that the radial
distortion is negligible must hold. When consumer grade
cameras are utilised, and if the lens has a wide angle, the
image has to be rectified to eliminate camera distortion.
Objects in an image distorted by radial distortion become
more distorted when the object moves further away from
the image centre. Under this circumstance, the full projec-
tion matrix is usually applied. In general, a two-step calibra-
tion process is needed (Xu et al., 2018): (1) camera intrinsic
matrix estimation using Zhang’s method (Zhang, 2000); (2)
camera extrinsic matrix estimation using at least four point
correspondences.

Combining the camera intrinsic matrix and extrinsic
matrix, the full projection matrix is obtained and applied to
transform the motion in the image coordinates to the real-
world coordinates. With this method, the camera angle
problem and radial distortion problem are solved. It should
be noted that the first step is usually completed indoors and
the focal length is always fixed to keep the camera intrinsic
matrix unchanged. However, when a zoom lens is selected
to be used in the field, the focal length of the zoom lens is
adjusted to take the best images with respect to the sur-
roundings of the measurement targets, camera location, field
of view (FOV), camera resolution and measurement dis-
tance, and so forth. Then, the camera intrinsic matrix has to
be calibrated in the field, which is not an easy task. The
authors recommend using a zoom lens with negligible radial
distortion to avoid the tedious calibration work of camera
intrinsic matrix for field applications.

Without the first step of the full projection matrix cali-
bration, it is degraded to the third calibration method, the
planar homography matrix. The planar homography matrix
transforms the 2D plane of the object to the 2D real-world
plane which means it can only be applied to estimate
motion in two dimensions. For most of the structures in
civil engineering, not all the displacements in three direc-
tions are needed. For example, the displacement in the ver-
tical direction of bridge structures, is the most dominant as
well as the displacement in the transverse direction for
some flexible structures such as long span bridges under
wind loads.

On the other hand, for high rise buildings, bridge towers
and stay cables, two cameras and a full projection matrix
are necessary to determine the transformation between 2D
image planes and the 3D real world. In this study, only 2D
motion is discussed and it is feasible to apply the planar
homography matrix to achieve camera calibration. As shown
in Figure 2, the image on the top right is the original pic-
ture of a footbridge taken by the camera and the axis of the
camera lens is not perpendicular to the front side of the

Figure 1. Flowchart for proposed full field structural displacement measurement method.
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footbridge, indicating some obvious projection distortions.
After using the planar homography matrix and four point
correspondences, the original image is re-projected and the
image at the lower right shows the rectified effect without
projection distortion. The mathematical details of the planar
homography matrix method are as follows:

As shown in Figure 2, the real-world object (a foot-
bridge) is projected to the image plane. As a result, the
shape that is determined by the four points (A, B, C, D) on
the real-world plane is distorted due to the projection.
According to the work of Hartley and Zisserman (2003), the
projection from the real-world plane to the image plane is
expressed by the linear transform:

X ¼ Hx (1)

where X ¼ fX, Y, 1gT, x ¼ fx, y, 1gT. In this formulation,
(x, y) are the image coordinates, (X, Y) are the original
coordinates in the real world and H is the 3� 3 homogra-
phy matrix which transforms the real-world plane to the
image plane.

The equal symbol, ‘¼’ of Equation (1) is equality up to
scale. If s denotes the scale, Equation (1) is expressed by:

X ¼ sHx (2)

The scale of the matrix does not affect the equation, so
only the eight degrees of freedom corresponding to the ratio
of the matrix elements are significant (Hartley & Zisserman,
2003). The homography matrix H has nine unknowns but
only eight of them are independent. Equation (1) can be
formed as:

X
Y
1

8<
:

9=
; ¼

h1 h2 h3
h4 h5 h6
h7 h8 h9

2
4

3
5 x

y
1

8<
:

9=
; (3)

This matrix is computed directly from image-to-world
point correspondences. From Equation (1), each image-to-
world point correspondence provides two linear equations
in the H matrix elements. For n point correspondences, a
system of 2n equations with eight unknowns is obtained.
This means that at least four point correspondences are
needed to solve the problem. If more than four point

correspondences are provided, Equation (1) becomes over-
determined and a homogeneous estimation method is
implemented to estimate the optimal H. Writing the
homography matrix, H in vector form as, h ¼ fh1, h2, h3,
h4, h5, h6, h7, h8, h9gT, Equation (3) for n points becomes:

Ah ¼

x1 y1 1 0 0 0 �x1X1 �y1X1 �X1

0 0 0 x1 y1 1 �x1Y1 �y1Y1 �Y1

x2 y2 1 0 0 0 �x2X2 �y2X2 �X2

0 0 0 x2 y2 1 �x2Y2 �y2Y2 �Y2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

xn y2 1 0 0 0 �xnXn �ynXn �Xn

0 0 0 xn yn 1 �xnYn �ynYn �Yn

2
66666666664

3
77777777775

h1
h2
h2
h3
h4
h5
h6
h7
h8
h9

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;
(4)

It is a standard result of linear algebra that the vector h
that minimises the algebraic residuals jAhj, subject to jhj¼1,
is given by the eigenvector of least eigenvalue of ATA. This
eigenvector is obtained directly from the singular value
decomposition (SVD) of A. Writing h back in matrix form,
the homography matrix, H is obtained. The scale s can be
calculated by substituting the point correspondences, X, x,
and the homography matrix H, into Equation (2).

2.3. Image data acquisition

Unlike data from conventional sensors such as displacement
sensors, accelerometers, strain gauges or tiltmeters, which
provide one dimensional data (i.e. temporal data), image
data is two dimensional and contains temporal and spatial
information. This increases the demand to sample larger
amounts of data and results in a reduction in the sampling
rate of image data acquisition systems (i.e. cameras and
image grabbers) compared to the conventional sensors. For
image data acquisition systems, the sampling rate is referred
to as frame rate, expressed in frames per second (FPS).
When used within the context of single point or full field
displacement time history from a vision-based system, the
sampling rate is different from its frame rate.

Figure 2. Image projection using the planar homography matrix and four point correspondences.
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The frame rate is related to the camera exposure time,
time trigger, and so forth. Usually frame rate is a critical
factor to be considered when doing image data acquisition
in vision-based displacement measurement and it always
influences the selection of image acquisition methods and
devices. Depending on the monitoring or measurement
requirements (whether real time monitoring or not), gener-
ally there are two ways to do image data acquisition as
shown in Figure 3:

1. If there is no requirement to carry out real time dis-
placement monitoring, the image data acquisition sys-
tems grab images continuously (also called video
recording) and then processes the image data afterwards
(post processing). The image data acquisition system
can be a portable camera, or a digital camera which can
be connected to a computer through different types of
interface such as GigE, USB2/3, Camera Link, FireWire
(IEEE 1394/IIDC DCAM Standard), or an analogue
camera which needs an image grabber card to be con-
nected with a computer, or even a smart phone. The
normal portable cameras and smart phones usually
have internal clock and the frame rate can be set as a
fixed number such as 30 FPS, 60 FPS or 120 FPS. The
images or videos are stored in the on-board storage
card. In practical applications, the frame rate is not
always fixed. For example, when the frame rate is set to
60 FPS, practically it might be less than that. For

instance, within the scope of this study, a Canon port-
able camera was tested, capturing video at a frame rate
of 60 FPS at a resolution of 1920� 1080 pixels.
However, analysis showed that the real frame rate was
59.94 FPS on average. The frame rate reduction might
be associated with some frames being delayed or
dropped as a result of longer exposure time or unsuc-
cessful triggering. As for the off-the-shelf portable cam-
eras, the real and the pre-set frame rates are not
distinctly different than each other. This feature makes
them a convenient option for the monitoring of struc-
tures with low frequency dynamic characteristics.
However, it is hard to find information on image time-
stamps and dropped images. On the other hand, com-
puter controlled analogue or digital cameras can deliver
this information accurately during the exposure, since
the image data acquisition procedure is programmed
into a software package. When using these kinds of
cameras, the exposure time can be auto-adjusted to
acquire images with good quality. Nevertheless, image
data acquisition is still a non-uniform sampling process.
In general, the frame rate is calculated as 1/Dt, where
Dt is ideally the time interval for uniform sampling. In
reality, the time interval between consecutive images
varies every time, as Dti (i¼ 1, 2, … , k) and the aver-
age frame rate is calculated as the ratio of the total
number of frames and the total acquisition time. To
partially remedy this problem, a triggering function (i.e.

Figure 3. Image data acquisition and processing.
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an edge signal) that controls the exposure can be sent
to the Input/Output (I/O) interface of the camera satis-
fying the nominal uniform sampling (Dong, Celik,
et al., 2018). It should be noted that the trigger fre-
quency has to be less than the camera’s maximum
frame rate and a high trigger frequency may lead to an
increased probability of frame drop.

2. If there is a requirement to do real time displacement
monitoring, then the selection has to be among com-
puter-controlled cameras. The data sampling process is
divided into three steps: (1) image grabbing; (2) image
transmission to the computer; (3) image processing.
The computation time spent in each step (Dtig, Dtit,
Dtip,) may also vary to produce different numbers of
samples because the exposure time, transmission time,
and motion tracking time interval (during image proc-
essing) at each step may differ. For instance, as
described earlier, a triggering function is applied to
make the image grabbing time intervals, Dtig, equal and
uniform, while the transmission time, Dtit, and image
processing time, Dtip, may vary. For these reasons, the
data sampling rate is decreased and becomes less than
that of (1). Also, it is a non-uniform sampling process.
To make this data sampling process uniform, a waiting
time, Dtipw, can be added into the image processing
time. This waiting time forces the total sampling time
to be fixed and, as a result, the real sampling rate
is decreased.

It is essential to know whether or not the application will
require real time monitoring as it impacts the selection of
motion tracking algorithms. In this study, full field displace-
ment is estimated by computationally demanding optical
flow algorithms which means that some of them cannot
afford real time monitoring. That is why the selection of the
optimal optical flow algorithm is a crucial step.
Furthermore, in the cases when multiple cameras are
needed, an array of cameras with time synchronisation can
be designated to satisfy the measurement requirement
(Wilburn, Joshi, Vaish, Levoy, & Horowitz, 2005).

2.4. Full field optical flow estimation using deep
learning methods

Optical flow is the distribution of motion velocity vectors in
image data. The motion can be an image sequence captured
by a single camera or two images captured by two different
cameras. The optical flow is usually represented by a 2D
vector, i.e. the horizontal and vertical components, along
with the two different directions. To estimate the full field
structural displacement, optical flow estimation of the image
sequences containing the motion of structures, is a good
option. In general, there are two different optical flow esti-
mation subsets: (1) local optical flow estimation methods,
which calculate the flow vector on the selected pixels, blobs,
or key points [e.g. Lucas-Kanade algorithm (Lucas &
Kanade, 1981)]; and (2) global optical flow estimation meth-
ods, which calculate the flow vector at each pixel of the

image [e.g. Horn–Schunck algorithm (Horn &
Schunck, 1981)].

Global optical flow estimation methods are ideal choices
for full field structural displacement measurement, while uti-
lising pyramid, window and smoothing techniques. The
local optical flow estimation methods can also be used to
estimate the flow vector at each pixel. Bouguet (1999)
improved the original Lucas-Kanade method by implement-
ing pyramid, feature tracker and interpolation to get the
optical flow at each pixel. Sun, Roth, and Black (2014) ana-
lysed the current practices in optical flow estimation quanti-
tatively and most of the optical flow methods were
developed using the formulation structured by
Horn-Schunck.

These methods are called classical methods. Based on the
classical optical flow methods, Sun et al. (2014) imple-
mented non-local smoothing techniques to develop a new
method named ClassicþNL (Classic with non-local). The
performance of ClassicþNL was validated by comparing
with the classical optical flow methods on the popular
optical flow datasets and showed better estimation results.
Khaloo and Lattanzi (2017) implemented the Lucas-Kanade
(LK) method, Horn-Schunk (HS) method, Black and
Anandan (BA) method, and Classicþ non local smoothing
(ClassicþNL) methods, which are investigated in Sun’s
work (Sun et al., 2014), and developed pixel-wise structural
motion tracking methods and verified them on two shaking
table tests.

Even though these classical optical flow methods are pro-
grammed as built-in functions into current computer vision
libraries such as MATLAB or OpenCV and successfully
implemented for structural displacement monitoring, there
are lots of parameters in the functions that need to be
adjusted based on experience. Limitations of classical optical
flow methods such as the small displacement assumption,
brightness consistency, motion boundary problems are still
the main sources of errors. For structural engineers without
enough experience in the computer vision field, it is difficult
to use such methods. Further, some of the classical methods
are too slow to satisfy the requirement of real
time monitoring.

Instead of the aforementioned classical methods in com-
puter vision, deep learning has been a very popular tool to
help address the challenges in the field of computer vision
in recent years (Bengio, Goodfellow, & Courville, 2017;
Lecun, Bengio, & Hinton, 2015). With pre-trained deep
neural networks, the optical flow can be easily estimated
(Dosovitskiy et al., 2015; Ilg et al., 2017) by processing the
image sequences through the pipeline of the forward propa-
gation of the networks, without adjusting too many parame-
ters as in classical optical flow methods. Since the dataset
can be augmented by adding artefact noise, illumination
change and other interference factors, the deep learning-
based optical flow methods can perform better than the
classical methods (Ilg et al., 2017).

With GPU acceleration, the deep learning-based optical
flow method can do real-time monitoring. In addition, deep
learning based methods such as FlowNet (Dosovitskiy et al.,
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2015) and FlowNet2 (Ilg et al., 2017) are good at large dis-
placement estimation, which is one of the drawbacks of the
classical methods. In this study, a deep learning-based
optical flow method, i.e. FlowNet2, is implemented to
achieve full field structural displacement monitoring.
FlowNet2 is based on the work of FlowNet that was first
proposed by Dosovitskiy et al. (Dosovitskiy et al., 2015).
The study represented a paradigm shift in optical flow esti-
mation by allowing the use of a simple Convolutional
Neural Network (CNN) architecture to directly learn the
concept of optical flow from the dataset.

In FlowNet, Dosovitskiy et al. proposed two CNN archi-
tectures: FlowNet-S and FlowNet-C. In FlowNet-S,
Dosovitskiy et al. first stacked two input images together
and fed them through a generic network with 9 convolu-
tional layers, allowing the network to decide itself how to
process the image pair to extract the motion information.
The first layer has a CNN kernel size of 7� 7, the second
and third layers have kernel sizes of 5� 5, and the fourth to
ninth have kernel sizes of 3� 3. The dimensions of each
layer are conv1 (354� 512� 6), conv2 (192� 256� 64),
conv3 (96� 128� 128), conv3_1 (48� 64� 256), conv4
(24� 32� 512), conv4_1 (24� 32� 512), conv5
(12� 16� 512), conv5_1 (12� 16� 512) and conv6 (6� 8
� 1024). Finally, they added a refinement operation of the
coarse feature maps to the high-resolution prediction and
then provided the optical flow prediction. The detailed
CNN architecture can be found in (Dosovitskiy et al., 2015).

In FlowNet-C, instead of directly stacking two images,
they first fed the two images to three convolutional layers
separately and then combined them together with an explicit
correlation layer. After another six convolutional layers, a
refinement operation was added and then the optical flow
prediction output. The training dataset FlowNet used is
their homemade FlyingChair dataset, which simulates the
motions and illumination change. The pre-trained FlowNet
performs well on the current optical flow dataset, especially
for the case of large displacement.

However, FlowNet still cannot compete with variational
methods in small displacement and real-world data. Ilg
et al. (2017) proposed FlowNet2 based on FlowNet, where
multiple FlowNet-S and FlowNet-C networks were stacked
and a sub-network specialising in small motions to improve
the accuracy and the speed of the original FlowNet was inte-
grated. They trained the new CNN architecture on the
FlyingChair and FlyingThings3D datasets. Illumination
change, background clutter and other noises were added to
the training data set as data augmentation to simulate real
scenarios. Combining different training dataset and orders,
FlowNet2 finally gave nine different CNN architectures for
optical flow prediction.

These CNN architectures are suitable for various applica-
tion requirements such as small displacement, large dis-
placement, good accuracy and fast speed as well as being
capable of dealing with illumination change and background
clutter. FlowNet2 performs well on small displacement and
real-world data and is fast enough for real-time motion esti-
mation. It should be noted that FlowNet2 will not always be

the strong choice for full field optical flow estimation, and
with the development of the computer vision techniques,
more advanced optical flow algorithms will come out and
be the alternatives for the purpose given in this study.

Figure 4 presents the optical flow estimations of a beam
motion in two images using six different methods, namely,
Horn-Schunk (HS), Lucas-Kanade with pyramid and sparse
to dense interpolation (LKPyrSD), Farneback, BA,
ClassicþNL and FlowNet2. The reason the specific methods
are chosen for comparison is that they are implemented and
validated for structural displacement measurement in litera-
ture aforementioned. The beam has a downward deflection
from Frame 1 to Frame 2 and since there are sensors
installed on it, the motion in the images are not just those
of the beam but also those of the cables hanging from
the sensors.

In the flow field colour coding, the colour indicates the
motion direction and the distance away from the centre
indicates the motion amplitude. In this case, the beam
moves down from Frame 1 to Frame 2 so it should be col-
oured yellow in the full field optical flow map according to
the flow field colour coding. In the optical flow estimation
results, HS provides the worst estimate and is not robust in
the presence of image noise. The beam motion is interfered
with motions in other directions and the background causes
an excessive amount of incorrect motion estimation.
LKPyrSD gives poor results for motion boundaries and the
motions on boundaries are blurred.

The Farneback method cannot give accurate results for
the whole beam but only those parts with salient textures.
BA and Classic-NL perform better than these three but still
give unsatisfactory results on boundaries. FlowNet2 gives
the best results for beam motion, especially at boundaries. It
even gives more detail about the motion of the cable. On
this basis, the authors have selected FlowNet2 for full field
optical flow estimation. The results using HS, LKPyrSD, BA
and Classic-NL are similar to those by (Khaloo & Lattanzi,
2017) and Classic-NL gives the best prediction among these
four classical optical flow methods.

In the comparative studies of the experimental verifica-
tion section, the authors will compare the results from
FlowNet2 with Classic-NL for structural displacement moni-
toring. Instead of performing image re-projection using the
planar homography matrix to mitigate the distortion caused
by projection first and then estimating optical flow just as
(Khaloo & Lattanzi, 2017) did in their work, in this study
the authors directly estimate the optical flow and shift the
original points to the new location. Then the authors imple-
ment the planar homography matrix to project the location
in the image to the real world. The consideration is that if
the planar homography matrix is applied to the image first,
the re-projection might break the pixel structures and this
makes optical flow estimation inaccurate.

2.5. Camera motion subtraction

When using vision-based methods to estimate structural dis-
placement, especially in field application, camera motion is
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always a big issue which can induce displacement measure-
ment errors. Camera motion may be caused by the ground
vibration or wind. It will be mixed into the structural
motion and has to be removed to rectify displacement
measurement. There are two main approaches to mitigate
the camera motion: (1) filtering out the displacement com-
ponents related to the frequencies of the camera motion; (2)
directly subtracting the motion of a static object/scene in
the video from the total motion.

The first approach is suitable for the case when the fre-
quency of the camera motion is not close to the structural
motion with a trade-off that accelerometers are necessary to
be installed on the camera to identify the frequencies of
camera motion. The second approach is suitable for the case
when there are static areas (objects assumed to be static) in
the field of view of the camera (Feng & Feng, 2017). In this
study, the second approach is implemented to eliminate the
displacement errors induced by the camera motion. As
shown in Figure 5, the areas A, B, C and D can be assumed
to be static. When a camera affected by ambient motion is
utilised to measure the structural displacement of the foot-
bridge, i.e. the displacement of M, the rectified displacement

is M subtracted by the average displacement of A, B, C
and D.

2.6. Structural displacement calculation

Once the rectified optical flow is obtained, the planar
homography matrix in Equation (1) is applied to convert
the displacement in pixels to their actual physical counter-
parts. By using full field optical flow and the planar homog-
raphy matrix, the full field structural displacement is
obtained. Theoretically, the displacement of any point of the
structure can be acquired by taking the value of the full field
structural displacement map. Conversely, in conventional
structural heath monitoring (SHM), displacement sensors
are installed to measure the structural displacements at dis-
crete points. As shown in Figure 6, a displacement sensor is
installed to measure the structural displacement of the
beam, and the result obtained here is the displacement at a
discrete point. The experimental setup and loading condi-
tion are outlined in Section 3 and Figure 9.

The structural displacement at a discrete point can be
obtained by using the displacement in the area close to the

Figure 4. Optical flow estimations using different methods.
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single measurement point. For example, the area marked by
the red box in the two frames of Figure 6 is used to esti-
mate the structural displacement of the discrete point that
the installed displacement sensor measures. Two methods
can be applied to estimate the structural displacement: (1)
displacement calculation with Gaussian kernel; and (2) dis-
placement calculation with mean kernel. The Gaussian ker-
nel applied in this study is represented by G, as follows:

G m; nð Þ ¼
1ffiffiffiffiffiffiffiffi
2pr2

p e�
m�hc

2ð Þ2þ n�wc
2ð Þ2

2r2
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where, m and n are the row column number of the
Gaussian kernel, respectively, and h and w are its height
and width. The symbol, bc indicates the floor function that
takes as input a real number, x, and gives as output the
greatest integer less than or equal to x.while the mean ker-
nel is represented by M, as follows:

M m; nð Þ ¼ 1
hw

(9)

The Gaussian kernel used in this study actually models
the focus of attention that is motivated by the biological vis-
ual system which concentrates on certain image regions
requiring detailed analysis (Zhang, Zhang, Yang, & Zhang,
2013). The closer to the focus centre, the greater the weight
is set. This Gaussian kernel implements the concept of
attention guide tracking. Additionally, since most of the
classical optical flow methods do not perform well on the
motion boundaries, the Gaussian kernel can decrease the
weight when calculating the weighted average displacement.

When applying camera motion subtraction, if the dis-
placement of the assumed static areas on the background
are also calculated using a Gaussian kernel, the error then
can be reduced by giving lesser weight to the parts away
from the focus centre of the static areas. This is an indirect
way of suppressing the outliers, especially those close to the
motion boundaries but far away from the focus centre.
When manually selecting the assumed static area, the
assumption is more accurate as the kernel is placed closer
to the centre. In addition, the mean kernel is a well-known
strategy which is applied in key points-based tracking using
Lucas-Kanade optical flow (Dong, Celik, et al., 2018), key
point matching using Fast Library for Approximate Nearest
Neighbors (FLANN) and Kanade-Lucas-Tomasi based tem-
plate matching (Yoon et al., 2016). Correlation based tem-
plate matching also uses the mean kernel method to find
the best location (Dong, Ye, et al., 2018).

The displacement of a discrete point is estimated by
combining the full field displacement of the selected region
with either Gaussian kernel, G, or mean kernel, M:

dGi ¼
Xm
1

Xn
1

Xi � X0ð Þ � G (10)

or

dMi ¼
Xm
1

Xn
1

Xi � X0ð Þ �M (11)

where � is the element-wise product operator, dGi and dMi

are the displacements estimated using Gaussian kernel and
mean kernel, X0 is the original coordinate of the pixel-wise
location in the real world, Xi is the current (the ith frame)
coordinate of the pixel-wise location in the real world and
Xi-X0 is the displacement vector.

The displacement time history is obtained by calculating
the optical flow between the current image (frame k as
shown in Figure 7) and the original image (frame 1 in
Figure 7, top row). In this strategy, there is neither frame
nor tracking location update and the displacement at every
single time point is independent of the others. Another

Figure 5. Structural displacement rectification using camera motion subtraction.
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strategy which is indicated in the bottom row of Figure 7
calculates the optical flow between two consecutive frames
with updating the frame each time. In the displacement
time history, the displacement at every single time point is
dependent on its previous neighbours. The final displace-
ment time history is the cumulative operation of the

incrementals obtained by calculating the displacement of
two consecutive frames.

With practical experiences and observations of conduct-
ing vision-based displacement measurement, general sugges-
tions are summarised as the pros and cons of the two
different strategies, which are listed in Table 1. The main

Figure 6. Structural displacement at a discrete point using kernels.

Figure 7. Two different strategies to process image sequences and get displacement time histories.

60 C.-Z. DONG ET AL.



reason that the first strategy is recommended is that when
the second strategy (with frame update) is applied, errors
tend to accumulate. Stiros (2008) analysed the accumulated
errors in velocities and displacement deduced from accelero-
graphs using numeric integration, which provided a possible
way to eliminate the errors in the second strategy. Stiros
indicated that the errors depend on the characteristic errors
of accelerometers such as the sensitivity/accuracy of the
measurements described by standard deviation, duration of
the record and instabilities in the sampling rate. Also, the
peaks in the accelerograms contribute to the errors during
numeric integration.

In this study, when using the second strategy, the process
of calculating displacements from consecutive frames is very
similar to the process of calculating velocity from accelera-
tions using numeric integration. It may be beneficial for the
elimination of errors in the second strategy from the theor-
etical analysis of Stiros’ work. While the formulas summar-
ised by Stiros are limited to the analysis of linear
movements and rotations are ignored; at the end, Stiros
stated that if baseline corrections are taken into consider-
ation for the formulas of errors, the numeric integration
errors may be reduced. In the study, the first strategy to
take the first frame as the baseline actually applies the way
of baseline correction to some degree and it is more prac-
tical than using numerical integration with Stiros’ theoretical
analysis.

Figure 8 displays the displacement results obtained from
the two different image sequence processing strategies and
the ground truth (displacement sensor) from the same
experiment introduced in Section 3. Due to the accumula-
tion of errors, the displacement result obtained using this
strategy with frame update deviates from the ground truth,
while the result obtained using the strategy without frame
update is consistent with it. While not updating brings
inconvenience and possible errors to structural displacement

Figure 8. Displacement results obtained from the two different image
sequence processing strategies and the displacement sensor.

Table 1. Pros and cons of the two different strategies to process image sequence.

Strategies
Without frame update: optical flow calculation

between the current image and the original image
With frame update: optical flow calculation

between two consecutive frames

Pros The displacement at every instant in the time
history depends on the tracking between the
current image and the original image and is
independent of the others. The error in current
time instant will not be accumulated.

Target scale changes, deformation, illumination
changes and other changes of image quality
can be updated in current tracking task and
adjusted tracking scenarios give high chances of
accurate tracking.

Cons Without updating the frames, the target scale
changes, deformation, illumination changes may
affect tracking performance. Classical optical
flow may fail to estimate large displacements in
non-consecutive frames since there is a small
motion assumption in classical optical flow
methods. The measurement target may be out
of view in the original frame.

The displacement at every instant in the time
history is dependent on its previous neighbour.
When calculating displacement time history,
error in the current instant will be accumulated
afterwards. This cumulative effect may cause a
drift through the time history and a gradual
loss of accuracy.

Figure 9. Experimental setup of the grandstand monitoring.
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measurement, these can be overcome by controlling the
image quality and using pyramid methods for optical flow
estimation or visual tracking.

In the practice of conventional object tracking task, the
second strategy (with frame update) is more popular and
practical when processing the tracking problems with scale/
view changes and illumination changes (OpenCV, 2019;
Zhang et al., 2013). However, in vision-based displacement
measurement, the first strategy (without frame update) is
preferred, regardless of approach: digital image correlation
based template matching, feature point matching, or optical
flow (Dong, Celik, et al., 2018).

3. Laboratory verification

3.1. Experimental setup

In this section, an experiment on a model grandstand in the
structures’ laboratory of the University of Central Florida is
designated to verify the feasibility and performance of the
proposed displacement methods. The grandstand, shown in
Figure 9, is a scaled model of part of a real American foot-
ball stadium. Detailed information can be found in previous
papers (Celik et al., 2018a, 2018b; Dong, Celik, et al., 2018).
One region of interest (ROI), P1, is selected as the measure-
ment point for the proposed method. At this point, a con-
ventional displacement sensor (potentiometer) is installed to
measure the displacement for comparison and is used as the
ground truth. The cameras are MindVision-MV-GE131gc-t
with a maximum frame rate of 60Hz, a resolution of
1280� 960 pixel and a zoom lens with a focal length of
5� 100mm. The cameras are connected to the same acqui-
sition system as the displacement sensor.

Unlike previous work (Dong, Celik, et al., 2018), in this
study no trigger module is applied to enforce uniform sam-
pling in the image data acquisition. The average frame rate
of the camera is around 29 FPS (frame per second). The
sampling rate for the displacement sensor is 100Hz and it is
down-sampled for comparison with the camera data.
During the experiment, one person stands on the grand-
stand and jumps as the camera and potentiometer record
the structural motion at P1. The acquired image sequence is
analysed using the proposed methods. The displacement
obtained from image sequences is compared with that of the
displacement sensor.

3.2. Comparative study of displacement measurement
using different methods

In this study, FlowNet2 is implemented and is verified
through comparison with ClassicþNL and the displacement
sensor. Here, to obtain the displacement, both mean kernel
and Gaussian kernel are applied to the full field optical flow
results estimated by ClassicþNL and FlowNet2. Figure 10
illustrates the comparison of displacement time histories of
P1 using displacement sensor (Disp. Sensor) and vision-
based methods, i.e. ClassicþNL full field optical flow with
Mean kernel (CþNLþM), ClassicþNL full field optical
flow with Gaussian kernel (CþNLþG), FlowNet2 full field
optical flow with Mean kernel (FlowNet2þM), and
FlowNet2 full field optical flow with Gaussian ker-
nel (FlowNet2þG).

The synchronisation of different data sources is done
manually. Different segments of the time history plot corres-
pond to different events happening on the grandstand under
human load. First, the subject climbs up the grandstand
causing an increase in displacement (0� 5s); then walks to
P1 causing fluctuations and an increase in the displacement
(5� 9s); then begins to jump (9� 19s), which produces a
continuous up-and-down pattern; then briefly stops;
resumes jumping for two more seconds (19� 21s) and
finally climbs down from the grandstand, allowing the dis-
placement to return to zero. The figure indicates that the
results obtained from all the vision-based methods are con-
sistent with the benchmark.

Before comparing the vision-based methods and displace-
ment sensor quantitatively, the displacement time histories
from the vision-based methods have to be preprocessed. As
mentioned, the image sampling is non-uniform in this
experiment. Figure 11(a) shows the time spent on the image
collection for each frame, Dt and Figure 11(b) gives the
histogram and normal distribution fit for the same variable.
The mean time interval for a frame is l¼ 0.0337 s which
gives an average camera frame rate of 29.7 FPS. This frame
rate cannot be directly approximated to 30 FPS, because the
standard deviation of the time interval, r is 0.012 s, which is
significant. To use the mean, frame rate would cause mis-
alignment problems for displacement time histories. The
interval of mean ±2 standard deviations, [l – 2r, lþ 2r],
is, [0.010s, 0.057 s] at a level of confidence of 95%. It should
be noted that the uncertainties of image process measure-
ment are the selection of visual tracking algorithms/optical
flow algorithms, region of interest and average methods

Figure 10. Comparison of displacement time histories from displacement sensor and vision-based methods.
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(mean kernel or weighted kernels), and so forth. These are
also the sources of the uncertainties.

The non-uniformly sampled displacement time histories
obtained from the vision-based methods are first resampled
at 25Hz using a cubic spline interpolation, while the uni-
formly sampled displacement time history obtained from
the displacement sensor is directly down-sampled to 25Hz.
Cross correlation (Oppenheim, Willsky, & Nawab, 1996) is
applied to synchronise the resampled displacement time his-
tories obtained from the vision based methods and the dis-
placement sensor.

Figure 12 depicts the resampled displacement time his-
tories of P1 using all methods. After resampling, the consist-
ency between the displacement time histories obtained from
vision-based methods and displacement sensor are still very
good and do not change, compared to Figure 10.
Normalised root mean square error (NRMSE) is applied to
evaluate the goodness of fit between the signals, and nor-
malised cross-correlation (NCC) is calculated to evaluate the
similarities between them:

FITNRMSE ¼ 1� |dv ið Þ�ds ið Þ|
|ds ið Þ�lds |

(12)

NCC ¼ jP dv ið Þ � ldv
� �� ds ið Þ � lds

� �jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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ds ið Þ � ldsÞ
2
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where dv(i) and ds(i) are the displacements from the vision-
based methods and displacement sensor, respectively, and
ldv and lds are their mean values.

The greater the values of FITNRMSE and NCC, the better
the fit. It can be seen in Table 2 that the proposed methods,
FlowNet2þM and FlowNet2þG, perform a little bit better
than the alternatives, CþNLþM implemented in literature
(Khaloo & Lattanzi, 2017). For example, the normalised
mean square error for the former two is 0.8758 which is
slightly better than that of the latter (0.8727). Similarly, the
NCC of the former at 0.9923 is slightly better than that of
the latter at 0.9921.

The displacement time histories when no loads are pre-
sent on the structure are extracted as the measurement error
distribution and are used to estimate the measurement
accuracy and resolution. The index of the measurement
accuracy and resolution is defined by ±2 standard devia-
tions, which corresponds to a level of confidence of 95%
(Khuc & Catbas, 2017; Xu et al., 2018). The smaller the
standard deviation, the smaller the error and the better the
measurement accuracy and resolution. Figure 13 presents
the distributions of measurement error from different meth-
ods. Table 3 gives the measurement resolution
(±2r) analysis.

Figure 11. Statistical analysis of time spent on image collection for each frame.

Figure 12. Resampled displacement time histories using displacement sensor and vision-based methods.

Table 2. Normalised root mean square error (NRMSE) and normalised cross-
correlation (NCC) of the fit between the vision-based displacements and
the benchmark.

Method FITNRMSE NCC

CþNLþM 0.8727 0.9921
CþNLþG 0.8726 0.9921
FlowNet2þM 0.8758 0.9923
FlowNet2þG 0.8758 0.9923
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From Figure 13 and Table 3, it is indicated that the
accuracy and resolution of the proposed methods using
FlowNet2 is ±0.0029mm which is very close to the ground
truth (displacement sensor) which is ±0.0021mm. The
vision-based method using ClassicþNL, has a resolution of
around 0.0240mm, which is almost 10 times that of the
proposed methods. Further, from Figure 13, it can be seen
that the proposed methods using FlowNet2 give much better
stability than ClassicþNL in displacement measurement,
especially from the sixth subplot ‘Distribution comparison’.

Since the displacements obtained from the vision-based
methods are non-uniformly sampled, they cannot be directly
processed by general Fast Fourier Transform (FFT) or
Power Spectral Density (PSD). Therefore, in this study, two
ways are applied to extract the frequency information from
the non-uniformly sampled displacement data: (1) Lomb-
Scargle Periodogram for the non-uniform sampled data
(Lomb, 1976); and (2) Power Spectral Density Using FFT
for uniformly sampled data from cubic spline data interpol-
ation. Figure 14 shows the comparison of displacement data
in the frequency domain. The modal testing of the same
structure was conducted in previous work and the first nat-
ural frequency is 5.74Hz (Celik et al., 2018a, 2018b; Dong,
Celik, & Catbas, 2017; Dong, Celik, et al., 2018).

From Figure 14, it is suggested that all methods give the
operational modes for human jumping (frequency around
2.86Hz). However, Lomb-Scargle method does not give
unique peaks (peak at 2.825Hz and peak at 2.881Hz) and
the peaks have a clear shift from those obtained from the
displacement sensor which is regarded as ground truth. This
is a distortion in dynamics which may be induced by non-
uniform sampling. The peaks obtained from the cubic spline
data interpolation of the original non-uniform data is very
close to the ground truth.

By picking the peak of the PSD curve, the frequencies of
human jumping load are extracted as shown in Table 4.
From this table, it is indicated that using cubic spline data
interpolation seems better than directly using the Lomb-
Scargle method. Using cubic spline interpolation data gives
the exact human jumping mode frequency as the displace-
ment sensor. In this view, using cubic spline interpolation
may correct the distortion that may be induced by non-uni-
form sampling. It might be because the sampling rate is low
and in this case cubic spline interpolation works.

However, in Figure 14 there is a discrepancy between
spline and displacement sensor results at higher frequencies,
which is expected due to the resampling step. This observa-
tion reflects the limitation of the vision-based methods: inher-
ently vision-based methods give a lower frequency range than
conventional displacement measurement for hardware and
software processing reasons, so that over the entire range,
especially the high frequency range, vision-based methods are
not as sensitive as their conventional counterparts.

From the accuracy and resolution analyses, as shown in
Tables 2 and 3, using mean kernel seems to be a little better

Figure 13. Distributions of measurement error for different methods.

Table 3. Measurement accuracy and resolution (±2r) analysis.

Method
Disp.
sensor CþNLþM CþNLþG

Flow
Net2þM

Flow
Net2þG

±2r ±0.0021 ±0.0240 ±0.0248 ±0.0029 ±0.0029
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than the Gaussian kernel, which was not expected from the
very beginning. The authors believe this to be because the
region using the kernel did not contain too many motion
boundaries and the advantage of Gaussian kernel was not
manifest. As a result, at this time, it remains an open question
whether it is better to use mean kernel or Gaussian kernel.

3.3. Comparison of computation times of vision-based
methods using different full field optical
flow algorithms

When comparing the image processing time, it takes
1.7 seconds to calculate the full field optical flow of two
images with a resolution of 1280� 960 pixel using FlowNet2.
The computation time is accelerated by a Graphics Processing
Unit (GPU) on a Linux system (Ubuntu 18.04) with the AMD
Ryzen 5 2600X CPU, 16Gb RAM, and the NVIDIA GeForce
GTX 1080 Graphics Card. It takes about 1600 seconds for the
same operation on the same system using ClassicþNL. The
ClassicþNL used in this study is the same as that of Khaloo
and Lattanzi and does not implement GPU acceleration.
During this experiment, 1159 images were collected, and it
took about 32.8minutes using FlowNet2 to calculate the full

field optical flow of the image sequence whereas it took about
21.5 days for ClassicþNL.

The processing tests were conducted on the same com-
puter and computation times were directly extracted from
the internal clock when running optical flow codes. This is
a limited test, but it is a practical and simpler way to com-
pare the speeds of different algorithms. To date, it is
unknown whether ClassicþNL can use GPU acceleration.
Perhaps in the future, the current ClassicþNL can be
extended to a GPU version and the processing speed accel-
erated. At this time, the proposed method of implementing
FlowNet2 gives a much higher processing speed and at the
same time, provides better accuracy.

As a deep learning-based optical flow estimation algo-
rithm, FlowNet2 can take advantage of GPU acceleration
technology, which makes the highly time-consuming optical
flow estimation task much faster. As stated in the literature
(Ilg et al., 2017), FlowNet2 and its sub-networks can achieve
8 to 140 FPS real time optical flow estimation on the
Middlebury data set with an NVIDIA GeForce GTX 1080
Graphics Card. This means that FlowNet2 and its sub-net-
works can be easily implemented to do real time full field
displacement measurement. From this experiment, it can be
clearly seen that the vision-based method using ClassicþNL
algorithm is much slower than using FlowNet2.

4. Field application

4.1. Experimental setup

In this section, a field application is presented that was per-
formed on a footbridge on campus of the University of

Figure 14. Comparison of displacement data in the frequency domain.

Table 4. Frequencies of human jumping load extracted from displacement
data: unit (Hz).

Method
Disp.
sensor CþNLþM CþNLþG

Flow
Net2þM

Flow
Net2þG

Direct PSD 2.867 – – – –
Splineþ PSD – 2.867 2.867 2.867 2.867
Lomb-Scargle – 2.881 2.881 2.881 2.881
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Central Florida (UCF) to verify the feasibility of the pro-
posed displacement measurement methods. The structure
(Figure 15) is a three-span (7.31mþ 39.01mþ 7.3m) truss
bridge with a width of 3.65m. A portable camera (Z
Camera E1) with a resolution of 1980� 1080 pixels, a frame
rate of 60 FPS and an Olympus zoom lens with a focal
length of 75–300mm was used to collect images during the
experiment. The measurement location is at midspan and
T1 (see figure) was selected as the region for the vision-
based measurement. The distance from the camera to the
measurement region was about 52 m. An accelerometer was
installed at midspan to measure the vibration. The sampling
rate of the accelerometer was 200Hz. Point T0 in the back-
ground was selected as the static reference and used to elim-
inate the camera motion caused by ground vibration and
wind effects. During the experiment, two persons jumped at

the bridge midspan and both the camera and the accelerom-
eter recorded the vibration of the bridge.

4.2. Analysis and results

Figure 16 illustrates the displacement time histories obtained
from the proposed methods. Here both Mean kernel and
Gaussian kernel are used to calculate the displacement at
midspan. In this experiment, using Mean kernel and
Gaussian kernel give almost identical displacement results.
The red curve (-) and the cyan dashed curve with circle (-o-
) show the original displacement at T1 without doing cam-
era motion subtraction, while the blue curve (-) and the
magenta dashed curve with asterisks (-�-) show the dis-
placement at T1 with camera motion subtraction. Further,

Figure 15. Experimental setup for a footbridge.

Figure 16. Displacement time histories obtained from the proposed methods. FlowNet2þG org and FlowNet2þM org represent the original displacement data
obtained using FlowNet2 with Gaussian kernel and Mean kernel, respectively. While FlowNet2þG w/cam. mot. subtr and FlowNet2þM w/cam. mot. subtr repre-
sent those with camera motion subtraction.
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the black dashed curve is added to show the zero line. In
this figure, FlowNet2þG org and FlowNet2þM org repre-
sent the original displacement data obtained using FlowNet2
with Gaussian Kernel and mean kernel, respectively. While
FlowNet2þG w/cam. mot. subtr and FlowNet2þM w/cam.
mot. subtr represent the ones with camera motion subtrac-
tion. Please note that FlowNet2þG org and FlowNet2þM
org as well as FlowNet2þG org and FlowNet2þM org are
almost identical in Figure 16.

After camera motion subtraction, the structural vibration
varies up and down by around ±2mm. The camera motion
subtraction shifts the displacement downwards by about
1.5mm, especially in the first 32 seconds, and the range is
reduced by about 38%. Clearly the camera motions caused
by ground vibration and wind have a substantial influence
on the displacement measurement and it is necessary to cor-
rect for the camera motions. Technological advances in
cameras might provide vibration reduction features, which
can also be considered for camera shake correction in
the future.

Figure 17 illustrates the acceleration time history
obtained from the accelerometer installed at T1. A compari-
son was conducted between the displacement from the pro-
posed methods and the measured acceleration in the
frequency domain. The portable camera used in this experi-
ment provides a uniform sampling rate so that there is no
need to process the displacement data using non-uniform
frequency analysis methods. By directly applying an FFT to
the displacement and acceleration data, the frequency

spectra are obtained and are shown in Figure 18. By using a
peak-picking method, the operational modal frequencies of
the footbridge under human loads are extracted and sum-
marised in Table 5.

In this study, the peak frequencies are simply those
observed from displacement and acceleration data. There
was no investigation to determine whether they are caused
by human jumping or are natural modal frequencies. The
first three operational modes are listed and for the modes
extracted from the proposed methods, they are very close to
those from the accelerometer. However, around the third
mode (i.e. 11.53Hz), there are two more pseudo-modes
(10.87Hz and 12.29Hz) which make it hard to pick the
right operational mode.

Compared with the third natural frequency measured by
the accelerometer (i.e. 11.56Hz), it is assumed that
11.53Hz in the vision-based signal, is most likely to be the
third operational mode. The pseudo-modes may come
from the camera motion caused by wind or ground
motion. Even through camera motion subtraction is
applied in this case, there may still be vibration which can-
not be removed completely. From Table 5, it can be seen
that the difference between the modal frequencies obtained
from the proposed methods and the accelerometer are all
less than 0.5%. This gives a lot of confidence that the pro-
posed method is accurate and capable of use in field
application.

Table 5 Comparative study of operational modal frequen-
cies from vision and accelerometer signals

Figure 17. Acceleration time history obtained from accelerometer.

Figure 18. Operational frequencies of bridge under human jumping excitation: (a) vision-based system; (b) accelerometer signal.

STRUCTURE AND INFRASTRUCTURE ENGINEERING 67



It should be noted that the camera motion effects are not
completely eliminated as shown in Figures 17 and 18, even
camera motion subtraction is applied. Camera motion sub-
traction is partially efficient in getting rid of the tripod/cam-
era vibration effects. The pseudo modes can be removed by
filtering out the vibration frequencies of the tripod/camera
setup. While they are not measured in this study and it is
one of the limitations.

4.3. Recommendations for practice in field application

In field application, the measurement environment is differ-
ent to that in a laboratory, and the following are
recommended:

1. Camera motion: The influence of camera motion needs
to be minimised. The effect of wind and ground vibra-
tion should be reduced by careful selection of the cam-
era location. It is useful to include a stationary object in
the field of view to facilitate camera motion subtraction.
Putting a triaxial accelerometer on the camera and fil-
tering out the camera motion effects are not inconveni-
ent in field application.

2. Background clutter: Background clutter (e.g. due to
leaves moving in the wind) should be avoided because,
when calculating full field optical flow, the motions in
the background may cause difficulties. It tends to
reduce the accuracy of the flow prediction of the
measurement.

3. Region selection of target: The target in the image
should be sufficiently large and it should be ensured
that no other moving object is inside the region that is
not part of the target.

4. Kernel selection: For simplicity and convenience, the
mean kernel can be selected since there is very little dif-
ference in the use of mean kernel and Gaussian kernel
in this experiment.

5. Camera calibration: Drawings of the structure should
be used or dimensions measured to facilitate image
calibration.

5. Conclusions

To achieve non-contact displacement monitoring for civil
structures with less user involvement and to overcome the
limitations of common vision-based methods, a novel full
field structural displacement measurement method using
deep learning-based optical flow, is proposed. The feasibility
of the proposed method is verified through a comparative
study of a series of laboratory experiments and a field appli-
cation. The main conclusions are as follows:

1. A procedure for vision-based displacement measure-
ment is presented and provides a standard reference for
future users.

2. A deep learning-based full field optical flow algorithm,
FlowNet2, is implemented in the proposed approach. It
decreases the requirement for human involvement in
the operation and gives more accurate measurement
results with less computation time.

3. Issues in vision-based methods for real-time monitoring and
post processing are explored and strategies for the use of
portable cameras, industrial cameras, triggers and time con-
trol are presented. The non-uniform sampling problems are
discussed, and camera trigger, spline interpolation, Lomb-
Scargle method are recommended to solve the problems.

4. Strategies for displacement calculation in common
vision-based methods are discussed, specifically the issue
of whether to calculate the motion between consecutive
images or between the current image and the initial one.
To reduce drift caused by an accumulation of errors in
calculating the differences between consecutive images,
the authors recommend the latter approach.

5. The camera motion issue is discussed in the context of
field application. Camera motion subtraction is pro-
posed to address the errors induced by camera motion.

In the future, further work will be done to process the
non-uniform sampled image data and explore the applica-
tion of kernels in calculating displacements at discrete struc-
tural points. Additional study will be focused on the
investigation of bridge deflection profile, full field structural
modal analysis and distribution factor calculation using the
proposed method. Furthermore, how shading and illumin-
ation affect the proposed method will be evaluated.
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Table 5. Comparative study of operational modal frequencies from vision and accelerometer signals.

Operational mode f (Hz): Vision f (Hz): Acc. Difference between Vision and Acc.

1 2.467 2.467 0.00%
2 4.778 4.756 0.46%
3 10.87, 11.53, 12.29 11.56 5.97%, 0.26%, 6.31%
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Nomenclature

X image coordinates
x real world coordinates
H homography matrix
s scale factor
h vector form of H
G Gaussian kernel
M mean kernel
d displacement
FITNRMSE goodness of fit using normalised root mean square error
NCC normalised cross-correlation
r standard deviation
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