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Abstract. In the present paper, we introduce new families of the g-Fibonacci and g-Lucas poly-
nomials, which are represented here as the incomplete g-Fibonacci polynomials F,f (x,s,q) and
the incomplete g-Lucas polynomials Ll,i (x,s,q), respectively. These polynomials provide the
g-analogues of the incomplete Fibonacci and Lucas numbers. We give several properties and
generating functions of each of these families g-polynomials. We also point out the fact that the
results for the g-analogues which we consider in this article for 0 < g < 1 can easily be translated
into the corresponding results for the (p,q)-analogues (with 0 < ¢ < p = 1) by applying some
obvious parametric variations, the additional parameter p being redundant.
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1. INTRODUCTION

The Fibonacci numbers are defined by the following recurrence relation:
Fot1=Fn+ Fr— (n€{0,1,2,---})

with the initial conditions Fp = 0 and F; = 1 and the Lucas numbers are defined by
the same recurrence relation with the different initial conditions Lo =2 and L = 1.

In existing literature, there are many extensions and generalizations of the Fibon-
acci numbers. For instance, Filipponi [13] defined the incomplete Fibonacci and
Lucas numbers as follows:

k .
o= (""" 0sks(5) (L.1)
j=o\ /
and
k n n—j
Ly(y=Y —|" | O0=k=|2]). (1.2)
L A
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where n = 1,2,3,---. We note that
Rl ) = By
and

Ln(L%J) = Ly.

The generating functions of these numbers were studied by Pintér and Srivastava
[17]. Many other authors have also studied this topic (see, for example, [8—12,18,19,

»22]).
For 0 < g < 1, the g-integer is defined by

1—¢q"
)=l = (13)
and the g-factorial is defined by
n].[n—1 1 n=1,2,73,--
]t i= [n].[n—1]---[1] ( ) (L4)
1 (n=0).
The g-binomial coefficients are defined by
n []!
= 0=k= 1.5
=GR -

with (see [2] and [20])

|:gi| =1 and |:Zi| =0 (n <k).

The Heine’s binomial formula is recalled here as follows (see [2, p. 2]):

1 - [nlgln+1g-[n+j—14 ;
=0 Z x’.

T (74!

The g-difference operator D is defined as follows:

J )= f(gx)
Dyf (x) = #——4%
! (1—-g)x
if x #0.
Cigler [60] introduced the g-Fibonacci polynomials which are defined below:

|25

2 _ .
Fy(x,s,q) = Z q(ﬂ{l)[n _J, B l]sj X172 (ne{0,1,2,---}). (1.6)

j=0 /
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Also, in [4], we have the following explicit formula for the g-Lucas polynomials:

3] .
Lnu;&q)::E:q@)—kﬂ—[";]}sfxmﬂf (nef0,1,2,--)). (1.7

= [l
A recurrence relation for the g-Fibonacci polynomials is given by
Fn (x’S,Q) = XFn—l (X,S,Q) +(q_ I)SDan—l (X,S,Q) +SFn—2 (xﬁqu)a

with the initial values Fy (x,s,q) = 0 and F; (x,s,q) = 1. The g-Lucas polynomials
satisfy the same recurrence relation as above:

Ln(x,5,q) =xLp—1(x,5.9)+ (¢ —1)sDgLn-1(x,5.q) +5Ln—2(x.5.9),
but with the initial values given by (see, for details, [4])
Lo(x,s,q9) =2 and Li(x,s,9) =x.
The following formulas provide relationship between these polynomials:

Ly (x,8,9) = Fpt1(x,5.9) +5Fn—1(x,5,9)
and
Ln (X’CIS»Q) = Fn+1 (X’S’Q) +anFn—1 (X»S7C])~
For more details about the g-analogues of the Fibonacci polynomials, see [1,3-5,7,

]. There are only a few studies for the g-Fibonacci and ¢-Lucas polynomials and
for the extensions and generalizations of these polynomials.

We choose to remark in passing that several authors (see, for example, [23] and
[24]) studied the so-called (p, q)-Fibonacci and (p,q)-Lucas polynomials by intro-
ducing a seemingly redundant parameter p, since the so-called (p,g)-number [n], 4
is given (for0 <g < p = 1) by

(n€f{l1,2,3,--+})
[n]p,q = p—d
0 (n=0)
()
P/n
= p" " [nly a8)
and
1—g"
=



514 H. M. SRIVASTAVA, NAIM TUGLU, AND MIRAC CETIN

=p'™" [nlp.pq. (1.9)
which do exhibits the fact that the results for the g-analogues which we consider in
this article for 0 < g < 1 can easily be translated into the corresponding results for
the (p, g)-analogues (with 0 < g < p = 1) by applying some obvious parametric vari-
ations, the additional parameter p being redundant.

The aim of this paper is to introduce and study g-analogues of (1.1) and (1.2).
We thus investigate the incomplete g-Fibonacci and g-Lucas polynomials and derive
some of their properties including their generating functions.

2. MAIN RESULTS

We define the incomplete g-Fibonacci and g-Lucas polynomials by using the ex-
plicit formulas as follows.

Definition 1. The incomplete g-Fibonacci polynomials are defined by

k .
Ff = Fy (x,5,9) =) q(j;l)[n g ]sf X1 2.1)
j=0 /
for0 <k = |21

If we take ¢ — 1—in (2.1), we get incomplete bivariate Fibonacci numbers in [22].
On the other hand, if we take ¢ — 1— and s = x = 1 in (2.1), we get incomplete
Fibonacci numbers studied in [13].

TABLE 1. Incomplete g-Fibonacci polynomials forn = 1,---,8 and

k=0,1,2,3,4.
FX(x,5.q9) = FfK
ko 1 2
1 1
2 X
3 | x2 x2+gs
4 x> x3+[2lgsx
5 | x* x*4[3]gsx?  x*+[3]gsx2+¢3s2
6 | x> x>+[4]gsx® x> +[4]gsx3+[3] ¢3s3x
7 6 6 4 6 a4 B4 354 6 4, B4 35 4. 63
x x°+[5] gsx x° +[5] gsx* + ZH q°s°x x° +[5] gsx* + Hzﬂ g s°x*+q°s
8 | x7 x7+[6]gsx> x7+[6] qsx5+%q3s2x3 x7 +[6] qsx5+%q3s2x3+[4] q%s3x

We now define incomplete g-Lucas polynomials.

Definition 2. The incomplete g-Lucas polynomials are defined by

k ) o . .
£k =Lk (x.5.9) = Zq(é)ﬂ[” 7 ]sf X2 2.2)
= [=JlL J

for0=k=|%]



SOME RESULTS ON THE g-ANALOGUES ... 515

TABLE 2. Incomplete g-Lucas polynomials forn = 1,---,7and k =0,1,2,3.

Uk (x,5,q9) =
n/k |0 1 2
1 X
2 | x2 x2+4[2]s
3 x3  x3+[3]sx
4 | x* x*+[4]sx?  x*+[4] sx? +uqs
5 | x> x+[5]sx3 x°+[5]sx +[5] qs*x
6 x®  x®+[6]sx* x®+[6]sx +[H][H] qs?x?  x®+[6] sx*+ HH qs x2+[6] ¢3s
7 x7 x7T+[7]sx®> x7+[7]sx +%qs2x3 x7+[7] sxs-‘r- 2] qs?x3 +[7]1 ¢3s3x

In particular, if we take ¢ — 1— in (2.2), then we get incomplete bivariate Lucas
numbers studied in [22]. Moreover, if we take ¢ — 1— and s = x = 1 in (2.2), then
we get incomplete Lucas numbers studied in [13].

2.1. Recurrence relations

Theorem 1. The recurrence relation of the incomplete q-Fibonacci polynomials
is given by
fn"j; =xF (g —1)sDgFE 4+ sFF (2.3)
for0=k ==
Proof. We find from (2.1) that

x}vnkfll‘i‘(f]—l)SDq Frr+sFE
_Z (”‘)[ _ ]SJ nt1-2;
F- 1)Zq<"?‘)[”;j Jn-2iisr a2
Jj=0
k i+ny[n—7—11 . .
+Zq(12 )[ j }s1+1xn—1—2/
j=0
s , i
=3 fa" | a-ng® " -2y 4
Jj=0

+q® n=J | sjn+1-2j
j—1
It is known that (see [5])

q«‘;l)["—i +1} _
J
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) n—j () n—j+1 . ¢) n—j
=q'\ 2 i +(@g—1)g*2 = [n—2j +2]+qg"2 o1

Therefore, the recurrence relation (2.3) is seen to hold true. ]

In Theorem 1, by taking ¢ — 1— and x = s = 1, we get the following result:
Fuio(k+1) = Fag1(k+ 1)+ Fy (k) (Oéké%)’

where Fy, (k) are the incomplete Fibonacci numbers studied in [13].
The following theorem results, in part, from the recurrence relation (2.3).

Theorem 2. The following non-homogeneous recurrence relation of the incom-

plete q-Fibonacci polynomials holds true:

n—k

k —1
j’vnk+2 =(x+(@— l)qu)jrnkH +sFF —Cl(z)qn[ X i|Sk+1xn_2k_1- (2.4)

Proof. The proof of the non-homogeneous recurrence relation (2.4) follows from

Definition 1 and the equation (2.3). ]
Theorem 3. It is asserted that
2h =g+ (0sks g) . 2.5)
Proof. Using the equation (2.1), we have
ko ann—j Ml = =2
J - : . J —_ —_ . .
R SYLER] Kt MR R DY) K M
—o J izo J
k j N oy [n—7 n—j—1
~3 0 {q—@)q«; )[ g } +[ K ]} §I X2
iz J J—1
_ Zq(é) {q./[”fj] n [”ff _1]} ey
iz J Jj—1
ko .
=Y 4l L[”‘_J ]ijn—zj
e S U ) | R
= ¢k
for0=k =73. O

Theorem 4. The following recurrence relation holds true:

— n
LE (x.q5.9) = Ffy +4"s TS (0=k < 5) . 2.6)
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Proof. We consider
itny|ln—j | ;
n+1 +qn5?nk 11 _ Zq(lz )|: .]:|ijn—2/
J
=0

-1 )
+anZq(1;1)|:n_], _2j|jijn—2—2j
j=0 /

k .
— Zq(’i‘)[” —J }ijn—zj
j=0 /
ko .
+q" Zq(é)[n? I l]ij"_zj
j=1

k . .
S Rty

_Zq( woal s e

—Ln(x,anQ)
for0=k = O

Theorem 5. The recurrence relation of incomplete q-Lucas polynomials is given

by
< ”_1). 2.7)

£ = vl + =00y 52 (0
Proof. In view of (2.3) and (2.5), we find that
k+1 _ gkt
Lotz =Fuis + 5T
(xg,vnkle +(g—1)sDy n+2+”’n+1>
5 (xFE 4+ (= 1)sDFF ! 4578
=X (r‘nkle + 55, ) +(@—1)sDq ( n2 TF Fr- 1) ‘H( n+1 +s K 11>
= x4 (1) sDggk, )+ sk

for0 <k <221 O
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Theorem 6. The following non-homogeneous recurrence relation of the incom-
plete q-Lucas polynomials holds true:

$§+2 = (x+(g—1)sDy) iﬁ—i—l

q(g)q" (q_k [n+1]— 1) [n —k]sk+1xn—2k 29
n—k] k |

+s§€fl—

Proof. It is easy to derive non-homogeneous recurrence relation (2.8) by using
(2.2) and (2.7). O
2.2. Summation formulas

Theorem 7. The following summation formula for the incomplete q-Fibonacci
polynomials holds true:

1
k Tk k+1 k+1
E (s.‘Fn i T @=1)sDgF, 4, ]) EEAT Y R T (2.9)

where x #0 and n = 2k + 2.

Proof. Our proof uses the principle of mathematical induction on 4. For & = 1,
the equation (2.9) holds true. Suppose that the equation (2.9) holds true for some
integer & > 1. Then, by using the equation (2.1), we get

h

1
Zx_ (an+1 +(q_1)SD ‘f'n—l—l—l-J)
=0

~.

( ntj T @—=1sDyg n+1+j)

1
+x_h( wnt(@—1)sDg f’n+1+h>
1

k+1 k+1 ok k
TPt en ~ ¥ g g (Sj’n+h +(g— I)SDq$n+1+h)

h—1
1 k

_ zhk+1 7k ghk+1
Y (an+1+h+”’n+h+(‘1 )sDq n+1+h) XFnp
1

_ b ks k41

= il nani2 ™

which completes the proof of the assertion (2.9) by the principle of mathematical
induction on /. U
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Theorem 8. A summation formula for the incomplete q-Lucas polynomials is

given by

—1
1 k k+ k+1
Z—]( Ehy @)Dl ) = 5 gkl gkt @0

where x #0 and n = 2k + 1.

Proof. For using the principle of mathematical induction on 4, we suppose that
the assertion (2.10) is true for some integer # > 1. We thus find from the equation
(2.7) that

h
1
X_J( °<(in-i—j +(q_1)SDq n+1+])
=0
h—1 1
=2 5 (shy +@=DsDg L1y )
j=0

1
T (S$1];+h +(@—1sDy £§+1+h)

_ k+1 k+1 k

- xh— $n+1+h_x°<£n (S‘f +n T (@—=1)sDgL n+1+h>
1 k+ k+1
xh< xZL +1+h+5‘$n+h+(‘1_1)SD $n+1+h) XLy
[ k+1
i Lntnta —X¥Lut1

which completes the proof of the assertion (2.10) by the principle of mathematical
induction on A. O

We now derive some summation formulas for the incomplete g-Lucas polynomi-
als.

Lemma 1. It is asserted that

5] .
Y g 9%[”;"]js1x"—% =%(n$n—x j—xz) @.11)
Jj=0

Proof. We observe that
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—n Zq(é)%[”;j]ijn—zj—l
_2% ¢ I [”‘j}-ijn—zj'—l
E | A
5] .

=nx_1£n—2x_l Zq jzA)[L].[n_.J]jijn—%"
v U S | R

which proves the assertion (2.11) of Lemma 1. ]

The following theorem asserts the summation formula of the incomplete g-Lucas
polynomials.

Theorem 9. Let l’ﬁ be the nth incomplete q-Lucas polynomial. Then

i’;:(LEJ—ngI):ﬁnJrgj—xin. 2.12)

Proof. By using Definition 2 of the incomplete g-Lucas polynomials, we get

3]
e e R O e

k=0

+ {q(g) [g}sox” +q(§) [n[i]l] |:n Ili|sx”_2 +q(§) [n[i]2] [n gz]szx"_4§

O goum 4oy g3 1 [7=51] 5y nal5)
! [o}”* I [n—L%J][ 2] ]S g

B S{{EIFI, O L e

JIL J

. 5] .
= (|5]+1)q %) ﬂ[”" i|ij"_2j —iq@j 7] [”‘f }Sfxn—zf,
2 =1L Jj P =1L Jj

,_
NS
| E—
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which, in view of Lemma 1, yields

\‘J k n xd
n
E f (L_J__+1)f %,

3. GENERATING FUNCTIONS

In this section, we obtain the generating functions of the incomplete g-Fibonacci
and the g-Lucas polynomials.

Lemma 2 (see [17]). Let {s,}neyq be a complex sequence satisfying the following
non-homogeneous recurrence relation:

Sn =XSp—1+YSn—2+rn (n>p), (3.1)

where {r,} is a given complex sequence. Then the generating function S¥ (x,y:t) of
the sequence {sy} is given by

Sk (x,y:t) = (so—ro+(s1—xso—ro)t +G (1)) (1 —xt —ytz)_l, (3.2)
where G (t) denotes the generating function of the given sequence {ry}.

Theorem 10. The generating function of the incomplete q-Fibonacci polynomials
is given by

U (x.5,q:1) = 12 F! (%kﬂ + (Fak2— (x + (¢ = 1)sDg) For11)t

+q(k;2)sk+lt2m) (1 — (x +(q— l)qu) t —St2)_1,
! (3.3)

where Fj, = Fy. (x,s,q) are the q-Fibonacci polynomials.
Proof. From (2.1) and (2.4), we get
Fk=0 ©O=n=2k+1)

and

Fokey1=F2k+1 and  Fop o = Fopyo.

Also, for n = 2k + 3, we have
ok k
Fnvoks1 = (x+ (- I)SDq) F ok

k _qn+k=2 _
_|_S37nk+2k_1_q(2)qn+2k 1|: . ]Sk+1xn 2
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Let
s, = Fk
n n+2k+1

and

ro=r1=0 and n =q(1§)q"+2k—1|:” +]]:_2:|sk+1x”_2.

We then find that
Gy =g® gkt L
(1 —xtq)’;Jrl

and

S*(x.5.q:1) = (5‘72'2“ + (5‘72]2+z —(x+(g=1DsDy) J¢215c+1)’

K) 2k+1 k+1,2 1
)
(= (x+(q—1)sDg)t —st?) .
Therefore, we have
Uk (x,5,q9;t) = 2kF1gk (x,s,9;1).
O

When ¢ — 1— in Theorem 10, then we obtain the generating function of the in-
complete bivariate Fibonacci polynomials (see [22]).

Theorem 11. The generating function of the incomplete q-Lucas polynomials is
given by

VE(x,5,q:1) = 1% (efzk + (Lok+1— (x+ (@ —1)sDy) £ax) t

LDk (qk+1 (1—xt)+ 1) ;k“)
(1—xtq),
(1= (x+(g=1)sDy)t —st>) ", (3.4)
where L = Lyj (x,s,q) are the g-Lucas polynomials.
Proof. Considering the relation between the incomplete g-Fibonacci and g-Lucas

polynomials, we get

o0

VE(x,5.q:1) = Z iﬁz”

n=0
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4. CONCLUSION

In the present study, we have introduce the g-analogues of the incomplete Fibon-
acci and Lucas polynomials which satisfy essentially analogous recursion formulas
and recurrence relations with the familiar g-Fibonacci and g-Lucas polynomials. Ap-
plications and some generalizations of the g-Fibonacci polynomials are given earlier
in [15, 16], which contain some nice results for the g-Fibonacci polynomials. Also,
Erkug-Duman and Tuglu [12] studied various families of multilinear and multilat-
eral generating functions for the generalized bivariate Fibonacci and Lucas polyno-
mials. These works motivate the derivations of similar results for the incomplete
g-Fibonacci and g-Lucas polynomials which we have investigated in this paper. By
means of the relationships (1.8) and (1.9), we have exhibited the fact that the results
for the g-analogues which we consider in this article for 0 < g < 1 and the corres-
ponding results for the (p,q)-analogues (with 0 < g < p = 1) are essentially equi-
valent, requiring only some obvious parametric variations, the additional parameter
p being redundant.
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