
Turk J Elec Eng & Comp Sci
(2019) 27: 2730 – 2745
© TÜBİTAK
doi:10.3906/elk-1811-40

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Modified self-adaptive local search algorithm for a biobjective permutation flow
shop scheduling problem

Çiğdem ALABAŞ USLU1,∗ , Berna DENGİZ2 , Canan AĞLAN1 , İhsan SABUNCUOĞLU3

1Department of Industrial Engineering, Faculty of Engineering, Marmara University, İstanbul, Turkey
2Department of Industrial Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey

3Department of Industrial Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri, Turkey

Received: 06.11.2018 • Accepted/Published Online: 05.05.2019 • Final Version: 26.07.2019

Abstract: Interest in multiobjective permutation flow shop scheduling (PFSS) has increased in the last decade to
ensure effective resource utilization. This study presents a modified self-adaptive local search (MSALS) algorithm for the
biobjective permutation flow shop scheduling problem where both makespan and total flow time objectives are minimized.
Compared to existing sophisticated heuristic algorithms, MSALS is quite simple to apply to different biobjective PFSS
instances without requiring effort or time for parameter tuning. Computational experiments showed that MSALS is either
superior to current heuristics for Pareto sets or is incomparable due to other performance indicators of multiobjective
problems.

Key words: Biobjective permutation flow shop, self-adaptive heuristic, parameter tuning

1. Introduction
Permutation flow shop scheduling (PFSS) is one of the most studied problems in operations research. The
problem is to find the order of n jobs processed through a series of m machines, such that the processing order
of the jobs is the same for all machines. Each job i has one operation on each machine j with a processing
time pij≥ 0 . Many optimization criteria have been proposed for the PFSS problem; for example, in [1] it was
stated that the most common objective is minimization of makespan (Cmax) followed by total flow time (TFT).
On the other hand, interest in multiobjective PFSS problems has increased over the last decade due to the
practical importance of ensuring effective resource utilization [2]. In multiobjective PFSS problems, several
objectives are considered simultaneously because optimizing one criterion may cause deterioration of others.
A multiobjective problem is specifically called a biobjective problem if it deals with optimization of only two
conflicting objectives. The biobjective Cmax-TFT has attracted substantial attention among all multiobjective
approaches, since Cmax minimization provides stable utilization of machine and manpower while TFT provides
reduced work-in-process costs.

PFSS problems are NP-hard problems even for a single objective and that is why there are numerous state-
of-the-art metaheuristic algorithms for the approximate solutions of the problem. Referring interested readers
to the comprehensive reviews of [3] and [4], Section 2 covers the studies that presented metaheuristic algorithms
for biobjective PFSS problems. The metaheuristic algorithms given in Section 2 are all managed by a set of
parameters, which has a significant impact on the solution quality and/or computational time. Searching for an
∗Correspondence: cigdem.uslu@marmara.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
2730

https://orcid.org/0000-0002-4594-1360
https://orcid.org/0000-0002-2806-3308
https://orcid.org/0000-0001-9220-8367
https://orcid.org/0000-0003-1524-5900

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

ideal parameter set, called parameter tuning or parameter optimization, is itself a difficult problem. Therefore,
sophisticated metaheuristics, which generally have increasing numbers of parameters, suffer from complicated
parameter tuning. The existing parameter tuning methods are classified as offline or online methods. Offline
parameter tuning is implemented before the execution of the algorithm, whereas online methods, also known as
parameter control techniques, are applied while running the algorithm.

Automatic algorithm configuration has increased interest in offline techniques, and it incorporates ex-
perimental design and statistical modeling techniques [5–9], racing algorithms [10–13], and metaoptimization
approaches, which tune the parameters using any other heuristic [14–20].

Although many studies have focused on offline techniques, there are two main difficulties that remain:
parameter values depend on the problem type and its various instances, and parameter effectiveness may vary
at different moments in the search. Online or parameter control techniques overcome these difficulties by tuning
parameters during the search process, updating dynamically or adaptively. There are many metaheuristic
applications with various parameter control approaches, and readers are referred to the representative studies
of [21–27], which mainly focus on adaptive parameters. On the other hand, these algorithms still include some
parameters that need to be initialized. The work in [28] proposed a simple self-adaptive local search (SALS) and
applied it to several single-objective problems including quadratic assignment, PFSS, classical vehicle routing,
and topological optimization of backbone networks. The work in [29] also represented a detailed implementation
of SALS for topological optimization problem. The only multiobjective application of SALS was provided in
[30] for a biobjective vehicle routing problem. The SALS algorithm has a single parameter, called an acceptance
parameter, which is updated using useful information (number of improved solutions and improvement rate of
the initial solution cost) gathered throughout the search process. Trial solutions obtained during the search
process are accepted or rejected depending on the current value of the acceptance parameter. It was shown that
the tuning of the single parameter of SALS is independent of the problem type or its instances [28].

There are two main motivations of the present study: it is the first application of SALS to a biobjective
PFSS problem considering Cmax and TFT, and it modifies SALS (MSALS) by enhancing new acceptance rules.
Although there are numerous studies in the literature of biobjective optimization of Cmax-TFT, all of them
suggest state-of-the-art heuristics, which are controlled by a set of well-tuned parameters. Parameter tuning
itself is an optimization problem that necessitates deep knowledge of both the problem and the technique selected
for tuning. Therefore, there is still room to investigate heuristic algorithms that are free of parameter tuning
in the related literature. The present study contributes to the literature by introducing the MSALS algorithm,
which is simple (from the perspective of parameter tuning) and efficient (from the perspective of obtaining
larger sets of nondominated solutions). Thus, it is expected that MSALS will be easily adapted in the practice
of PFSS problems with objectives of Cmax and TFT. Experimental results also verify that MSALS tends to
find a larger set of efficient solutions compared to SALS and it also surpasses most of the best state-of-the-art
heuristics considering different evaluation criteria.

The present study continues with the explanation of the metaheuristics selected from the literature of
multiobjective PFSS. Sections 3 and 4 present the basic SALS and MSALS algorithms, respectively. Section 5
provides the comparison of the proposed MSALS approach with SALS and also with the state-of-the-art
heuristics, which performs superiorly in the instances of [31]. Section 6 summarizes and concludes the paper,
and discusses future research directions.

2731

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

2. Related studies
In [4], Minella et al. evaluated 23 heuristic algorithms for multiobjective PFSS problems and showed that the
multiobjective simulated annealing (MOSA) of [32], multiobjective genetic algorithm local search (MOGALS)
of [33], and multiobjective tabu search (MOTS) of [34] exhibit superior performance compared to the other
evaluated algorithms. Later, the authors of [35] proposed the multiobjective iterated greedy search (MOIGS)
algorithm using a greedy mechanism, which has better performance than MOSA in terms of nondominated
solutions.

The authors of [36] proposed the multiobjective ant colony algorithm (MOACA) with 20 variants by
changing parameter settings and the local search scheme sequence. MOACA variants were compared with the
algorithms in [4] and MOIGS, showing that most nondominated solutions in the Pareto sets were yielded by
MOACA.

The authors of [37] proposed the two-phase Pareto local search (TP+PLS) algorithm, combining two-
phase local search and Pareto local search paradigms. Two-phase local search aggregates multiple objective
functions into a single objective, whereas the Pareto local search investigates nondominated solutions for the
considered initial set. Iterated greedy algorithms were integrated into the two-phase local search framework for
the multiobjective case as an initial step, with the Pareto local search algorithm implemented in the next step
to explore the search space. The two algorithms were combined to solve the biobjective PFSS problem for the
selected biobjectives among the pairs of Cmax, TFT, and weighted/unweighted total tardiness. It was shown in
[37] that TP+PLS contributed a high percentage of nondominated solutions to the net fronts.

The work in [1] proposed the restarted iterated Pareto greedy algorithm (RIPG), incorporating a tailored
local search mechanism and an effective initialization procedure. RIPG showed similar performance to state-of-
the-art algorithms for small problems, but significantly superior performance for medium or large problems.

The relatively recent study in [38] presented biobjective multistart simulated annealing (BMSA), which
combines simulated annealing and a hill climbing strategy to achieve convergence of search and escape from
local optima. BMSA performance was compared with 8 algorithms, excluding TP+PLS and RIPG, and it was
shown that BMSA contributes to 64% of the Pareto sets of the instances of [31].

The studies mentioned above presented the best state-of-the-art algorithms tested on the benchmark
instances of [31]. Therefore, the comparative study presented in Section 5 includes only these algorithms
to provide a comparison on the same basis. Although there are several recent studies in the literature that
concentrated on Cmax and TFT objectives, such as [39], [40], and [41], they considered neither the same
performance indicators of this study nor the same problem instances. Additionally, these studies did not
present the Pareto set to perform comparisons.

3. Basic structure of self-adaptive local search algorithm

The SALS algorithm starts with a solution, X, and searches the neighborhood of the current solution iteratively.
At each iteration a neighbor solution, X’, is selected randomly from the neighborhood of the current solution,
N(X), and accepted as the new current solution if X’ satisfies the following acceptance rule, where f (X) is the
objective function to be minimized:

If f(X’) ⩽ Θ f(X) then X ←− X’.
According to the given acceptance rule, a single parameter of SALS, Θ , determines the vicinity of the

current solution. Θ relies on two criteria: the quality of the best solution and the number of improved solutions

2732

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

obtained throughout the search process. The work in [28] introduced α1 and α2 , by Eqs. (1) and (2), to
measure the quality of the best solution and the number of the improved solutions, respectively. In Eq. (1),
Xb

(i) is the best solution found until iteration i and Xz is the initial solution. f(X) is assumed to be positive
for the whole solution space. C(L (i)) given in Eq. (2) is a counter, which is updated whenever a new best
solution, Xb

(i), is found. The search process is kept in the neighborhood of the current solution, N(X), until the
acceptance rule is assured. If the total number of rejected neighbors reaches the neighborhood size, | N(X) | ,
Θ is increased by an amount of α1 α2 only for the current neighborhood. The algorithm proceeds to the next
iteration whenever a neighbor solution, X’, is accepted. Θ is readjusted using α1 and α2 at the beginning of
each iteration as given in Eq. (3). The basic steps of SALS are given in Figure 1. As shown in Figure 1, Θ

does not require a predefined initial value since it is automatically equal to 2. As the search process proceeds,
α1 and α2 make Θ smaller. If the algorithm is allowed to run enough, Θ approaches 1 and forces the search
process to find better solutions. A detailed analysis of Θ can be found in [28].

α1 =
f(Xb

(i))

f(Xz)
(1)

α2 =
C(L(i))

i (2)

Θ = 1 + α1α2 (3)

Figure 1. Steps of SALS.

4. MSALS for biobjective PFSS problems

MSALS, for biobjective PFSS problems, uses the permutation representation of a solution (i.e. a sequence of
the jobs), X = [x1, ...xs, ...xn], where xs corresponds to a job in the sth order.

2733

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

The neighbor solutions are created using three types of moving mechanisms: adjacent-swap, exchange,
and insertion. The adjacent-swap mechanism interchanges xs with either xs-1 or xs+1 where s+1 ≤ n
and s-1≥ 1. The exchange mechanism interchanges xs with xp , where p-s > 1, and the insertion mechanism
inserts xs between xp and x p+1 where p+1≤ n .

The same moving mechanisms are also utilized by SALS when the permutation representation is adapted
[28, 30, 42]. MSALS selects one of the moving types randomly and then generates a random neighbor using the
selected moving mechanism at each iteration, allowing repetitions of the neighbors. If the candidate neighbor
solution, X’, meets the acceptance rule defined below, it is recorded as the new current solution. MSALS
manipulates both Cmax and TFT objectives simultaneously for the neighbor solutions using the following three
acceptance rules in turn:

Rule1: if {Cmax(X’) ≤ ΘCmaxCmax(X)} and {TFT(X’) ≤ ΘTFTTFT(X)} then X←− X’
Rule2: if {Cmax(X’) ≤ ΘCmaxBestC(i)

max} and {TFT(X’) ≤ ΘTFTTFT(X)} then X←− X’
Rule3: if {Cmax(X’) ≤ ΘCmaxCmax(X)} and {TFT(X’) ≤ ΘTFTBestTFT (i)} then X←− X’
Parameters Θ Cmax and Θ TFT are introduced for Cmax and TFT objectives, respectively, as given in

Eqs. (8) and (9). According to the first acceptance rule, a neighbor solution is accepted as a new current
solution if its Cmax is better than Θ Cmax times the current solution’s Cmax and its TFT is better than Θ TFT

times the current solution’s TFT. The second and third rules, structurally, are similar to the first rule. However,
the second rule takes account of the best Cmax and the last rule uses the best TFT found until the current
iteration instead of Cmax and TFT values of the current solution, respectively. MSALS is run using each of
the rules for a prespecified number of replications. Whenever a neighbor solution is accepted based on the
given acceptance rule, the algorithm proceeds to the next iteration. If the total number of rejected neighbors
exceeds the neighborhood size then ΘCmax and ΘTFT are increased by α1

Cmax α2
Cmax and α1

TFT α2
TFT ,

respectively. Once the algorithm proceeds to the next iteration, ΘCmax and ΘTFT are recomputed by Eqs. (8)
and (9) using the current levels of α1

Cmax , α2
Cmax and α1

TFT , α2
TFT , respectively. The α1

Cmax , α2
Cmax ,

α1
TFT , and α2

TFT are computed as given in Eqs. (4)–(7) as in SALS. In these equations, CCmax
(i) and CTFT

(i)

counters are updated whenever Cmax of X’ is better than the best Cmax, BestCCmax
(i) , found until iteration i

and TFT of X’ is better than the best TFT, BestTFT(i) , found until iteration i.

α1
Cmax =

BestCmax
(i)

InitCmax
(4)

α2
Cmax =

CCmax
(i)

i (5)

α1
TFT =

BestTFT (i)

InitTFT
(6)

α2
TFT =

CTFT
(i)

i (7)

ΘCmax = 1 + α1
Cmax + α2

Cmax (8)

ΘTFT = 1 + α1
TFT + α2

TFT (9)

2734

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

Finally, the basic steps of MSALS are given in Figure 2. During the initial iterations of the algorithm the
search is almost random, since both ΘCmax and ΘTFT are initially equal to 2. It is expected that as ΘCmax

and ΘTFT approach 1, the search converges to the set of high quality solutions.

Figure 2. Steps of MSALS.

2735

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

5. Computational study

Two experimental studies were conducted. Section 5.1 investigates the proposed MSALS algorithm’s acceptance
rules, and Section 5.2 compares the proposed MSALS outcomes with a reference set of benchmark instances
and several state-of-the-art heuristics of the biobjective PFSS. All experiments were performed on the well-
known and widely utilized [31] benchmarks. The 110 Taillard instances were classified into 11 groups: nine
combinations of {20, 50, 100} jobs and {5, 10, 20} machines, and two combinations of 200 jobs and {10, 20}
machines, with 10 instances in each group.

5.1. Analysis of the proposed acceptance rules

The application of the SALS algorithm to biobjective vehicle routing problems, called SALS-AU, was proposed
in [30]. The difference between MSALS and SALS-AU is the acceptance rules, explained as follows: let Θ1 and
Θ2 represent the acceptance parameters for the first and second objectives (in this study Θ1 is ΘCmax and Θ2

is ΘTFT), and f1(X) and f2(X) are the first and second objective functions of solution X , respectively (f1(X)

is Cmax(X) and f2(X) is TFT(X). f1(xb
(i)) and f2(xb

(i)) are used to indicate the best value until iteration i
of the first and second objective functions, respectively (f1(xb

(i)) is BestCmax
(i) and (f2(xb

(i)) is BestTFT(i)).
While SALS-AU uses the single acceptance rule as “(f1X’ ≤ Θ1f1(X)) and (f2X’ ≤ Θ2f2(X))”, MSALS uses
two additional acceptance rules given in Table 1.

Table 1. Acceptance rules of MSALS and SALS-AU.

MSALS SALS-AU
{f1(X’) ≤ Θ1f1(X)} and {f2(X’) ≤ Θf2(X)} {f1(X’) ≤ Θ1f1(X)} and {f2(X’) ≤ Θf2(X)}
{f1(X’) ≤ Θ1f1(xb

(i))} and {f2(X’) ≤ Θf2(X)}
{f1(X’) ≤ Θ1f1(X)} and {f2(X’) ≤ Θ2f2(xb

(i))}

MSALS needs to be run sequentially for each of the three acceptance rules as explained in Section 4. An
equal number of runs (20 runs) is set for the MSALS and SALS-AU algorithms. Runs were performed on the
same PC (Intel core 2 duo CPU 2.93 GHz) for each instance of [31]), but for instances with 200 jobs. Each
run of the two algorithms is terminated when a predetermined number of evaluated solutions is met. In this
comparative study, we aim to show the contribution of the additional two acceptance rules of MSALS to the
nondominated solution set. The experiments with MSALS also showed that its run time is short enough to
apply even large sizes of the problem (see Table 6). As an illustrative example, Figure 3 represents efficient
solutions obtained by applying each acceptance rule separately and nondominated solutions filtered from these
efficient solutions (notated as all rules in the figure) for an instance with size 100 × 20. Each rule clearly covers
a different portion of the Pareto front, since rules 2 and 3 substantially force the search process to improve Cmax

and TFT, respectively, while rule 1 tempers these two rules.
The utilization of all three acceptance rules results in larger sets of efficient solutions as shown in Table 2.

Apparently, the three acceptance rules of MSALS cause a substantial improvement in the number of efficient
solutions compared to SALS-AU, in which only the first rule is adopted. It is also notable that as the problem
size increases, the number of efficient solutions by MSALS tends to increase as shown in the right-most column
of Table 2.

2736

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

375000

380000

385000

390000

395000

400000

405000

410000

415000

420000

6300 6350 6400 6450 6500 6550 6600 6650 6700

T
F

T

Cmax

Rule1 Rule2

Rule3 All Rules

Figure 3. Efficient solutions obtained by each rule and nondominated solutions by the three rules for instance DD_Ta084
with size 100 × 20.

Table 2. Number of efficient solutions obtained by MSALS and SALS-AU.

PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8 PR9 PR10 Total Improvement %
20 × 5 SALS-AU 1 6 9 6 9 10 6 12 9 7 75 37

MSALS 3 6 9 11 13 13 12 13 13 10 103
20 × 10 SALS-AU 6 13 7 12 12 17 11 6 8 8 100 45

MSALS 17 16 9 20 15 23 13 11 13 8 145
20 × 20 SALS-AU 18 13 13 14 9 9 8 11 10 9 114 80

MSALS 27 22 28 16 16 17 15 28 17 19 205
50 × 5 SALS-AU 4 4 6 8 2 4 4 1 4 3 40 70

MSALS 5 5 11 7 6 8 6 8 6 6 68
50 × 10 SALS-AU 6 7 15 5 10 8 7 9 8 9 84 101

MSALS 14 16 27 13 15 15 12 20 19 18 169
50 × 20 SALS-AU 11 11 11 5 8 16 12 8 10 7 99 93

MSALS 22 20 19 16 17 24 16 18 21 18 191
100 × 5 SALS-AU 3 4 5 3 2 2 5 5 9 2 40 80

MSALS 6 5 10 6 7 5 9 11 8 5 72
100 × 10 SALS-AU 6 5 2 8 12 4 6 11 2 3 59 92

MSALS 12 8 8 10 19 16 12 14 8 6 113
100 × 20 SALS-AU 6 9 6 16 8 8 16 13 10 4 96 152

MSALS 24 25 26 32 16 22 25 28 25 19 242

5.2. Comparison of MSALS with the literature

A set of efficient solutions obtained from a multiobjective method is an approximation to the optimal Pareto
front. One common method to compare the set of solutions of different algorithms is to show Pareto dominance
relations between the sets. Namely, a solution set X dominates set Y if and only if every solution in set Y
is dominated by at least one solution in set X. To compare the MSALS algorithm with the existing heuristic

2737

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

algorithms in the literature in this respect, we use the performance metrics given below considering the notations
of [38]:

A : The number of efficient solutions found by an algorithm.
B : The number of nondominated solutions found by an algorithm in the Pareto front.
C(X,Y): The ratio of the number of dominated solutions of algorithm X by algorithm Y to the number

of efficient solutions of algorithm X.
In this study, the hypervolume indicator, IH , and its unary version, called the epsilon indicator, Iϵ ,

which are commonly used in the multiobjective literature (see [43]), are utilized. The IH indicator measures
the hypervolume of the objective space dominated by a given Pareto set. In biobjective problems, IH measures
the area covered by a given Pareto set with respect to a reference point. Therefore, having a higher hypervolume
means a better frontier. By considering the related literature, the reference point is obtained by increasing the
worst objective value by 20%. Since the objective values are normalized between [0,1], the largest IH (i.e. the
maximum area) is the multiplication of the reference points, r1 and r2 (1.2 × 1.2 = 1.44), for biobjectives.
The IH indicator is computed by Eq. (10) for the biobjectives, where s ∈ S represents the solutions of an
approximation to the Pareto front and O i (i) is the ith normalized objective value of solution s.

IH = ∪s∈S [r1, O1(s)]× [r2, O2(s)] (10)

The I ϵ indicator gives the minimum distance between a given Pareto front and the optimum Pareto front
(or a reference set); hence, lower values of I ϵ show a better frontier. I ϵ is computed for the biobjectives as given
by Eq. ((11), where R is the reference set and S is an approximation of the Pareto front.

Iϵ = max

{
mins∈S(O1(s))

mins∈R(O1(s))
,
maxs∈S(O1(s))

maxs∈R(O1(s))
,
mins∈S(O2(s))

mins∈R(O2(s))
,
maxs∈S(O2(s))

maxs∈R(O2(s))

}
(11)

Minella et al. [4] presented a more detailed review and the evaluation of 23 heuristic algorithms for three
different bicriteria flow shop scheduling problems. The preliminary results showed that MSALS outperforms the
reference sets of Taillard’s instances in [4]. Figure 4 shows illustrative examples for comparison of MSALS with
the reference sets on instances sized 100 × 20 and 200 × 20. It is observed that MSALS is able to dominate
the reference sets in [4] even though it finds a smaller set of efficient solutions.

According to the review of [4], MOSA [32] was the best performing algorithm for the Cmax-TFT biob-
jective among the investigated heuristic algorithms. Later, MOIGS [35] outperformed MOSA, and afterwards,
MOACA [36] gave better results than MOIGS. The authors of [36] also reported the best approximations to
the Pareto sets of the instances of [31] to date. In this study, the reported Pareto fronts by [36] were notated
as PRZ. PRZ is made up of the solutions provided by MOACA, MOSA, and MOIGS. Besides these three
heuristic algorithms, RIGP [1], TP+PLS [37], and BMSA [38] are other state-of-the-art algorithms proposed
for the biobjective PFSS problem. The performance of MSALS was compared with the solutions represented
in PRZ, and the results of BMSA, TP+PLS, and RIGP. It should be noted that the Pareto fronts provided
by BMSA are from the study of [38], the Pareto fronts of each experiment of TP+PLS are from the website
http://iridia.ulb.ac.be/ jdubois/pfsp_refsets.htm, and RIGP is reexperimented on the benchmark instances
using an executable file provided by the corresponding author of [1]. The termination criterion of BMSA is
the number of solutions searched and it is stated as a function of n and m. MSALS is allowed to run up to a
maximum number of solutions searched, too. The maximum number is the same as that of BMSA given by the

2738

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

375000

380000

385000

390000

395000

400000

405000

6200 6400 6600 6800

T
F
T

Cmax

MSALS

 e

Reference

Set

1280000

1290000

1300000

1310000

1320000

1330000

1340000

1350000

1360000

11400 11600 11800 12000 12200 12400

T
F
T

Cmax

MSALS

 e

Reference

Set

Figure 4. Efficient solution sets of MSALS against the reference sets of [4] for instances DD_Ta082 (100 × 20) on the
left and DD_Ta103 (200 × 20) on the right.

first set of parameters in [38]. On the other hand, TP+PLS and RIGP are terminated when a predetermined
time limit, which is 0.1 nm, is reached. MSALS was run 20 times on a PC with an Intel core 2 duo CPU, 2.93
GHz (the same experiments used to analyze the proposed acceptance rules).

To avoid confusion in the comparative study, an approximation to the Pareto set provided by an algorithm
is called a set of efficient solutions while the set of nondominated solutions contributed by all algorithms is called
the Pareto front. The number of efficient solutions, A, provided by RIGP, BMSA, TP+PLS, and MSALS and
in the set PRZ is averaged over ten instances of each size of instances [31] as given in Table 3. The number
of nondominated solutions, B, in the Pareto front contributed by the four algorithms and PRZ is also given
in Table 3 in terms of averages over ten instances per size. Additionally, the B/A performance metric shows
the ability of an algorithm to have more nondominated solutions in its set of efficient solutions. Results
in Table 3 show that the TP+PLS algorithm generates, on average, the largest size of efficient solutions
compared to other algorithms. RIGP also outperforms BMSA, MSALS, and the solutions in set PRZ in
terms of A, while BMSA and MSALS have similar performances. The average of nondominated solutions,
B, contributed to the Pareto sets is best for TP+PLS. RIGP and MSALS contribute to the Pareto sets showing
close performances, surpassing BMSA and the solutions of PRZ. On the other hand, MSALS has the largest
B/A ratio, which indicates most of the efficient solutions generated by MSALS also contribute to the Pareto
sets. However, the performance of TP+PLS is close to MSALS in terms of B/A . RIGP and BMSA yield
the same B/A ratios on average. Table 4 gives pairwise comparisons of MSALS with the three algorithms
and PRZ in terms of coverage criterion C. These results reveal that MSALS dominates nearly half of the
efficient solutions of the other algorithms but TP+PLS. BMSA and set PRZ are able to dominate only a small
fraction of the efficient solutions of MSALS. However, TP+PLS and RIGP dominate 42% and 33% of the
efficient solutions provided by MSALS, respectively. Finally, Table 5 gives the total number of nondominated
solutions contributed by the algorithms to the Pareto fronts of Taillard instances (since solutions of the instances
with size 200 × 10 and 200 × 20 are not available in the associated studies, we use NA in Tables 3–5).
Clearly the largest contribution to the frontiers is provided by TP+PLS, while MSALS and RIGP have close
performances. The complete set of the new Pareto fronts consolidated for the 110 instances of [31] is given

2739

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

at http://mimoza.marmara.edu.tr/ cigdem.uslu/Results_Taillard_Instances_Cmax_TFT.pdf to serve future
researchers.

Table 3. Comparison of MSALS, BMSA, PRZ, TP+PLS, and RIGP according to pairwise comparison measures A and
B.

BMSA PRZ MSALS TP+PLS RIGP
n × m A1 B2 B/A A B B/A A B B/A A B B/A A B B/A
20 × 5 13.4 12.7 0.95 10.3 9.7 0.94 10.3 5.5 0.53 14.6 13.2 0.90 16.1 15.7 0.98
20 × 10 17.5 22.1 0.73 18.4 13 0.71 14.5 9.3 0.64 20.7 13.6 0.66 22.1 19.2 0.87
20 × 20 18.7 15.7 0.84 26.7 20.7 0.78 20.5 14.6 0.71 28 22.2 0.79 30.4 28.2 0.93
50 × 5 8.4 0.5 0.06 7.1 0.2 0.03 6.8 7 1.03 20.1 7.1 0.35 19.5 0.7 0.04
50 × 10 18 0.6 0.03 10.8 0 0 16.9 6.6 0.39 47.3 35.2 0.74 37.3 3 0.08
50 × 20 17.4 0 0 12.9 0 0 19.1 4.3 0.23 53.3 41.2 0.77 37.1 3.6 0.10
100 × 5 8.8 1.6 0.18 6.9 0.4 0.06 7.2 3.4 0.47 21.8 6.6 0.30 20.6 0.5 0.02
100 × 10 14.5 1.8 0.12 15.1 0.6 0.04 11.3 5.7 0.5 46.8 26.4 0.56 40.1 3.8 0.09
100 × 20 26.2 0.4 0.02 7.8 0 0 24.2 12.7 0.52 78.8 36.2 0.46 52.3 14.2 0.27
200 × 10 NA NA NA NA NA NA 11.1 5.7 0.51 39.5 12.3 0.31 32.9 6.5 0.20
200 × 20 NA NA NA NA NA NA 24.4 23 0.94 72 3.4 0.05 60.3 6.2 0.10
Average 15.88 5.11 0.33 12.89 4.96 0.28 15.12 8.89 0.59 40.26 19.76 0.54 33.52 9.24 0.33

Table 4. Number of efficient solutions obtained by MSALS and SALS-AU.

C(MSALS, C(MSALS, C(MSALS, C(MSALS, C(BMSA, C(PRZ, C(TP+PLS, C(RIGP,
BMSA) PRZ) TP+PLS) RIGP) MSALS) SALS) MSALS) MSALS)

20 × 5 0.02 0.01 0.03 0.00 0.35 0.3 0.38 0.45
20 × 10 0.24 0.2 0.20 0.13 0.25 0.19 0.23 0.34
20 × 20 0.07 0.15 0.13 0.05 0.18 0.2 0.24 0.27
50 × 5 0.46 0.55 0.46 0.79 0.24 0.09 0.31 0.09
50 × 10 0.71 0.61 0.15 0.36 0.2 0.14 0.72 0.46
50 × 20 0.74 0.63 0.13 0.26 0.12 0.05 0.81 0.46
100 × 5 0.56 0.48 0.56 0.65 0.22 0.21 0.58 0.38
100 × 10 0.7 0.65 0.39 0.69 0.18 0.04 0.50 0.27
100 × 20 0.86 0.96 0.37 0.37 0.03 0 0.48 0.48
200 × 10 NA NA 0.51 0.66 NA NA 0.39 0.36
200 × 20 NA NA 0.92 0.90 NA NA 0.02 0.05
Average 0.49 0.47 0.35 0.44 0.19 0.13 0.42 0.33

Since the run time of the algorithms depends on the hardware and software available, and also pro-
gramming skills, we report only the run time requirement of MSALS in Table 6 to give an idea about its
computational performance. Table 6 shows that MSALS has enough efficiency to apply large-sized instances of
the problem. Also, it should be noted that all the considered algorithms except MSALS require fine-tuning of
their generic parameters in addition to the run time requirement on the instances. Five parameters of BMSA,
6 parameters of TP+PLS, and 6 parameters of RIGP are determined by the authors either through extensive
preexperiments or an experimental design scheme, using substantial time and effort. The utilized self-tuning

2740

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

Table 5. Total contribution to the Pareto fronts by MSALS, BMSA, PRZ, TP+PLS, and RIGP.

n × m Number of nondominated BMSA PRZ MSALS TP+PLS RIGP
solutions in the Pareto front

20 × 5 165 127 97 55 132 157
20 × 10 213 127 130 93 136 192
20 × 20 307 157 207 146 222 282
50 × 5 153 5 2 70 71 7
50 × 10 453 6 0 66 352 30
50 × 20 493 0 0 43 412 36
100 × 5 130 16 4 34 66 5
100 × 10 389 18 6 57 264 38
100 × 20 635 4 0 127 362 142
200 × 10 262a NA NA 61 123 65
200 × 20 326 NA NA 230 34 62
Total number of 3526 460 446 982 2174 1016
contributed solutions

a17 solutions out of 262 are reported in [4].

property allows MSALS to be applicable to different instances without any initialization or tuning of parameters
and this is an apparent advantage of MSALS compared with the other algorithms.

Table 6. Average run time performances of MSALS.

n × m MSALS CPU3 (s)
20 × 5 1.98
20 × 10 4.02
20 × 20 7.02
50 × 5 11.49
50 × 10 19.98
50 × 20 43.98
100 × 5 40.98
100 × 10 77.49
100 × 20 160.02
Average 40.77

According to the results in Tables 3–5, TP+PLS shows better performance than the other algorithms in
generating efficient solutions and contributing to the Pareto sets with more nondominated solutions. MSALS
has the best ratio of nondominated solutions to the number of efficient solutions. MSALS and RIGP show
similar performances with respect to the average of nondominated solutions while MSALS and BMSA show
similar performances for the number of efficient solutions on average. Coverage of MSALS over each algorithm
is greater than the coverage of each algorithm over MSALS, except in the comparison of MSALS with TP+PLS.
Consequently, TP+PLS, RIGP, and MSALS can be stated as the best three algorithms for Cmax-TFT biobjec-

2741

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

tives of PFSS problems. Additionally, hypervolume and epsilon indicators, averaged over the machine sizes and
the number of instances, are given in Table 7. In the calculation of Ih using Eq. (10), first, the set of efficient
solutions of an instance is consolidated among the results of all runs of the respective algorithm and then nor-
malized between [0, 1]. In the calculation of I ϵ using Eq. (11), the reference set is taken from [4]. Results show
the incomparability of the three algorithms in terms of Ih and I ϵ since the two indicators give contradictory
results. However, the simplicity property of MSALS because of its independence of parameter tuning should be
taken into account in the comparison of the algorithm with the TP+PLS and RIGP algorithms.

Table 7. Results of average hypervolume and epsilon indicators.

Ih Iϵ
Job size MSALS TP+PLS RIGP MSALS TP+PLS RIGP
20 1.0682 1.1530 1.1514 1.0066 1.0079 1.0071
50 1.0721 1.2868 1.2612 1.0089 1.0140 1.0116
100 1.0425 1.2786 1.2585 1.0024 1.0063 1.0032
200 0.9618 1.2186 1.2283 1.0002 1.0186 1.0027
Average 1.0434 1.2358 1.2245 1.0050 1.0110 1.0065

6. Conclusion
This study proposes MSALS, a modified version of SALS with two additional acceptance rules, for biobjective
PFSS problems to minimize Cmax and TFT. The main characteristic of SALS is its simplicity in terms of
free parameter tuning, and MSALS also possesses this simplicity. Many state-of-the-art algorithms have
been proposed for multiobjective PFSS problems, which perform very well according to various multiobjective
evaluation criteria. However, experiments conducted on the well-known benchmark instances of [31] intend to
compare MSALS with the state-of-the-art algorithms that generate the best existing efficient solutions on the
benchmark instances. In comparative study, performance indicators frequently utilized in the multiobjective
optimization problems such as the number of efficient solutions found, contributions to the Pareto fronts, ratio
of the number of nondominated solutions obtained by an algorithm to the number of efficient solutions of
another algorithm, or area covered in the Pareto fronts are considered. The experimental study showed that
MSALS is superior to the MOACA, MOSA, and MOIGS algorithms, proposed before in the related literature,
in terms of all performance indicators of multiobjectivity. MSALS also yields the best results in terms of the
ratio of nondominated solutions to the number of efficient solutions compared to all algorithms included in
the comparative study. Coverage of MSALS over other algorithms, except TP+PLS, is greater than that of
other algorithms. On the other hand, MSALS exhibits similar performance to BMSA according to the number
of efficient solutions and with RIGP according to the average nondominated solutions. Consequently, the
MSALS algorithm is either superior to or incomparable with the current best state-of-the-art algorithms in the
literature with respect to several multiobjective evaluation criteria. However, it should be noted that MSALS
is the simplest algorithm among all available algorithms of the biobjective PFSS to apply any instance without
any effort of parameter tuning.

As future research, MSALS can be further improved to provide different learning mechanisms for rule
selection. MSALS can also be applied to different multiobjective scheduling problem types to investigate its
effectiveness for general multiobjective optimization.

2742

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

References

[1] Minella G, Ruiz R, Ciavotta M. Restarted iterated Pareto greedy algorithm for multi-objective flowshop scheduling
problems. Computers & Operations Research 2011; 38 (11): 1521-1533.

[2] Fowler JW, Kim B, Carlyle WM, Senturk Gel E, Horng SM. Evaluating solution sets of a posterior solution
techniques for bi-criteria combinatorial optimization problems. Journal of Scheduling 2005; 8: 75-96.

[3] Yenisey M, Yagmahan B. Multi-objective permutation flow shop scheduling problem: literature review, classification
and current trends. Omega 2014; 45: 119-135.

[4] Minella G, Ruiz R, Ciavotta M. A review and evaluation of multiobjective algorithms for the flowshop scheduling
problem. INFORMS Journal on Computing 2008; 20 (3): 451-471.

[5] Coy SP, Golden BL, Runger GC, Wasil EA. Using experimental design to find effective parameter settings for
heuristics. Journal of Heuristics 2000; 7: 77-97.

[6] Adenso-Diaz B, Laguna M. Fine-tuning of algorithms using fractional experimental design and local search. Oper-
ations Research 2006; 54 (1): 99–114.

[7] Bartz-Beielstein T. Experimental Research in Evolutionary Computation: The New Experimentalism Natural
Computing Series. Berlin, Germany: Springer Verlag, 2006.

[8] Dobslaw F. A parameter tuning framework for metaheuristics based on design of experiments and artificial neural
networks. In: Proceedings of the International Conference on Computer Mathematics and Natural Computing;
Rome, Italy; 2010. pp. 1–4.

[9] Arin A, Rabadi G, Unal R. Comparative studies on design of experiments for tuning parameters in a genetic
algorithm for a scheduling problem. International Journal of Experimental Design and Process Optimisation 2011;
2 (2): 103–124.

[10] Birattari M, Stutzle T, Paquete L, Varrentrapp K. A racing algorithm for configuring metaheuristics. In: GECCO
2002 Proceedings of the Genetic and Evolutionary Computation Conference; New York, NY, USA; 2002. pp. 11–18.

[11] Balaprakash P, Birattari M, Stutzle T. Improvement strategies for the F-Race algorithm: sampling design and itera-
tive refinement. In: Bartz Beielstein T (editor). 4th International Workshop on Hybrid Metaheuristics, Proceedings
of Lecture Notes in Computer Science. Berlin, Germany: Springer Verlag, 2007. pp. 108–122.

[12] Barbosa EBM, Senne ELF, Silva MB. Improving the performance of metaheuristics: an approach combining response
surface methodology and racing algorithms. International Journal of Engineering Mathematics 2015; 2015: 167031.
doi: 1155/2015/167031

[13] López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T, Birattari M. The irace package: iterated racing for
automatic algorithm configuration. Operations Research Perspectives 2016; 3: 43-58.

[14] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International
Symposium on Micro Machine and Human Science; Nogaya, Japan; 1995. pp. 39–43.

[15] Nannen V, Eiben AE. A method for parameter calibration and relevance estimation in evolutionary algorithms. In:
Proceedings of Genetic and Evolutionary Computation Conference; Seattle, WA, USA; 2006. pp. 183–190.

[16] Meissner M, Schmuker M, Schneider G. Optimized particle swarm optimization (OPSP) and its application to
artificial neural network training. BMC Bioinformatics 2006; 7: 125. doi: 10.1186/1471-2105-7-125

[17] Hutter F, Hoos H, Stutzle T. Automatic algorithm configuration based on local search. In: Proceedings of the
Twenty-Second Conference on Artificial Intelligence; Vancouver, Canada; 2007. pp. 1152–1157.

[18] Hutter F, Hoos HH, Leyton-Brown K, Stutzle T. ParamILS: An automatic algorithm configuration framework.
Journal of Artificial Intelligence Research 2009; 36: 267–306.

[19] Smit SK, Eiben AE. Comparing parameter tuning methods for evolutionary algorithms. In: IEEE Congress on
Evolutionary Computation; Trondheim, Norway; 2009. pp. 399–406.

2743

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

[20] Neumüller C, Wagner S, Kronberger G, Affenzeller M. Parameter meta-optimization of metaheuristic optimization
algorithms. In: Proceedings of the 13th International Conference on Computer Aided Systems Theory; Las Palmas
de Gran Canaria, Spain; 2011. pp. 367-374.

[21] Eiben AE, Smit SK. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolu-
tionary Computation 2011; 1 (1): 19-31.

[22] Ren Z, Jiang H, Xuan J, Luo Z. Hyper-heuristics with low level parameter adaptation. Evolutionary Computation
2012; 20 (2): 189-227.

[23] Hansen N. An analysis of mutative σ -self-adaptation on linear fitness functions. Evolutionary Computation 2006;
14 (3): 255–275.

[24] Eiben AE, Michalewicz Z, Schoenauer M, Smith JE. Parameter control in evolutionary algorithms. In: Lobo F,
Lima CF, Michalewicz Z (editors). Parameter Setting in Evolutionary Algorithms. Berlin, Germany: Springer, 2007.
pp. 19-46.

[25] Meignan D, Koukam A, Creput JC. Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement
learning and mimetism. Journal of Heuristics 2010; 16 (6): 859–879.

[26] Serpell MC, Smith JE. Self-adaptation of mutation operator and probability for permutation representations in
genetic algorithms. Evolutionary Computation 2010; 18 (3): 491–514.

[27] Stützle T, López-Ibáñez M, Pellegrini P, Maur M, Montes de Oca MA et al. Parameter adaptation in ant colony
optimization. In: Hamadi Y, Monfroy E, Saubion F (editors). Autonomous Search. Berlin, Germany: Springer,
2012. pp. 191-215.

[28] Alabas-Uslu C, Dengiz B. A self-adaptive heuristic algorithm for combinatorial optimization problems. International
Journal of Computational Intelligence Systems 2014; 7 (5): 827-852.

[29] Dengiz B, Alabas-Uslu C. A self-tuning heuristic for design of communication networks. Journal of the Operational
Research Society 2015; 66 (7): 1101-1114.

[30] Alabas-Uslu C. A self-tuning heuristic for a multi-objective vehicle routing problem. Journal of the Operational
Research Society 2008; 59 (7): 988-996.

[31] Taillard E. Benchmarks for basic scheduling problems. European Journal of Operational Research 1993; 64 (2):
278-285.

[32] Varadharajan TK, Rajendran C. A multi-objective simulated-annealing algorithm for scheduling in flowshops to
minimize the makespan and total flowtime of jobs. European Journal of Operational Research 2005; 167 (3): 772-795.

[33] Arroyo JEC, Armentano VA. Genetic local search for multi-objective flowshop scheduling problems. European
Journal of Operational Research 2005; 167 (3): 717-738.

[34] Armentano VA, Claudio JE. An application of a multi-objective tabu search algorithm to a bicriteria flowshop
problem. Journal of Heuristics 2004; 10 (5): 463-481.

[35] Framinan JM, Leisten R. A multi-objective iterated greedy search for flowshop scheduling with makespan and
flowtime criteria. OR Spectrum 2008; 30 (4): 787-804.

[36] Rajendran C, Ziegler H. Computational Intelligence in Flow Shop and Job Shop Scheduling: A Multi-Objective
Ant-Colony Algorithm for Permutation Flowshop Scheduling to Minimize the Makespan and Total Flowtime of
Jobs. Berlin, Germany: Springer, 2009.

[37] Dubois-Lacoste J, López-Ibáñez M, Stützle T. A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling
problems. Computers & Operations Research 2011; 38 (8): 1219-1236.

[38] Lin SW, Ying KC. Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start
simulated-annealing algorithm. Computers & Operations Research 2013; 40 (6): 1625-1647.

[39] Blot A, Kessaci MÉ, Jourdan L, Hoos HH. Automatic configuration of multi-objective local search algorithms for
permutation problems. Evolutionary Computation 2019; 27 (1): 147-171.

2744

ALABAŞ USLU et al./Turk J Elec Eng & Comp Sci

[40] Sanjeev Kumar R, Padmanaban KP, Rajkumar M. Minimizing makespan and total flow time in permutation
flow shop scheduling problems using modified gravitational emulation local search algorithm. Proceedings of the
Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 2018; 232 (3): 534-545.

[41] Almeida C, Gonçalves R, Venske S, Lüuders R, Delgado M. Multi-armed bandit based hyper-heuristics for the
permutation flow shop problem. In: 7th Brazilian Conference on Intelligent Systems; São Paulo, Brazil; 2018. pp.
139-144.

[42] Dengiz B, Alabas-Uslu C, Dengiz O. Optimization of manufacturing systems using a neural network metamodel
with a new training approach. Journal of operational Research Society 2009; 60 (9): 1191-1197.

[43] Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG. Performance assessment of multiobjective optimiz-
ers: an analysis and review. IEEE Transactions on evolutionary computation 2003; 7 (2): 117-132.

2745

	Introduction
	Related studies
	Basic structure of self-adaptive local search algorithm
	MSALS for biobjective PFSS problems
	Computational study
	Analysis of the proposed acceptance rules
	Comparison of MSALS with the literature

	Conclusion

