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Abstract: This paper is devoted to hyperstonean spaces that are precisely the Stone spaces of measure algebras, or
the Stone spaces of the Boolean algebras of Lp -projections of Banach spaces for 1 ≤ p < ∞, p ̸= 2. Several new
results that have been achieved recently are discussed. Among these, in our opinion, the most significant one is that
which states that any Bochner Lp space is the p -direct sum of Bochner Lp -spaces of perfect regular Borel measures on
Stonean spaces for 1 ≤ p < ∞. Overall, we try to shed some light on the inner structure of these spaces, about which
very little is known.
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1. Introduction
Let X be a compact Hausdorff space, and let C(X) denote the Banach space of all continuous scalar-valued
functions on X with the usual supremum norm. On the one hand, it is a rare event in analysis that C(X)

is the dual of a Banach space, but, on the other hand, as we shall see soon, it is not so rare at all. Clearly
finite spaces fall into this category, and the Stone–Čech compactifications of infinite discrete spaces are trivial
examples of infinite spaces of this kind, as, for any discrete space D , l∞(D) ≃ C(βD) is the dual of l1(D),

where βD denotes the Stone–Čech compactification of D. (For two normed spaces E and F , E ≃ F means
that they are linearly isometric.)

In this article we shall discuss several equivalent descriptions of these spaces, which are made mostly in
term of concepts of analysis, and some new properties we obtained recently. We shall also try to shed some
light on their topological structure, about which our knowledge is very limited.

Let us recall that a compact Hausdorff space is called extremally disconnected if the closure of every open
set is open. These spaces are also called Stonean. They are precisely the Stone spaces of complete Boolean
algebras [9] .

Following Behrends [1] , we call an extended real-valued positive Borel measure on a Stonean space perfect
if:

(i) the measure of every nonempty open set is strictly positive,

(ii) every nonempty open set contains a clopen (closed and open) set with nonzero finite measure,
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(iii) the measure of every nowhere dense Borel set is zero (equivalently, the measure of every closed set with
empty interior is zero).

A Stonean space with a perfect measure on it is called hyperstonean or a
hyperstonean measure space. The Stone–Čech compactifications of discrete spaces are trivial examples of
hyperstonean spaces; for example, βN , the Stone–Čech compactification of the discrete space N of positive
integers, is hyperstonean, for the counting measure m on N can be extended to a perfect measure m on βN
defined by the equation

m(B) = m(B ∩ N)

for every Borel subset B of βN.
(The perfectness of m follows from the fact that βN \ N is a closed subset of βN with empty interior.

More generally, every locally compact Hausdorff space X is an open subset of βX, and therefore βX \X is a
closed subset of βX with empty interior.)

In [2] , Cengiz proved that any arbitrary positive measure is equivalent to a perfect Borel measure on
a Stonean space in the sense that for every number 1 ≤ p < ∞, their corresponding Lp spaces are linearly
isometric. Clearly equivalent measures are equivalent to the same perfect measure. This result shows that the
class of all hyperstonean spaces is huge indeed.

It is known that there is essentially one perfect measure on a hyperstonean space, meaning that all perfect
measures on the same space are equivalent to one another. It is also a fact that in a hyperstonean measure
space, any Borel set differs from a clopen set by a null set (see [1, 5]).

Given an arbitrary positive measure space (X,A, ν), let (Ω,B, µ) be its hyperstonean equivalent. Exam-
ples show that, in general, the scalar L∞(ν) need not be the dual L1(ν)∗ of L1(ν) ; there may not be enough
functions in L∞(ν) to represent (via integral) all the members of L1(ν)∗ (see [6, p. 349] and [7 , p. 249]).

In the above mentioned paper, Cengiz also proved that

L1(ν)∗ ≃ L1(µ)∗ ≃ L∞(Ω, µ) ≃ C(Ω),

which shows that the dual of an L1 space is always an L∞ space.
Let us recall that a regular Borel measure on a compact Hausdorff space is called normal if it vanishes

at nowhere dense Borel sets.
Let Ω be a Stonean space, and let N denote the Banach space of all normal measures on Ω and S the

union of the supports of all positive normal measures on Ω . (The support of a positive regular Borel measure
is the complement of the largest open set of measure zero.)

Dixmier [3] proved that C(Ω) is the dual of a Banach space if and only if S is dense in Ω. Grothendieck
[4] showed that if C(Ω) is the dual of a Banach space E then E ≃ N. Finally, Behrends [1] proved that S is
dense in Ω if and only if Ω is hyperstonean. Thus, summing up, we have the following theorem.

Theorem 1 For a Stonean space Ω the following are equivalent:

i) Ω is hyperstonean,

ii) C(Ω) is a dual space,
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iii) C(Ω) is the dual space of N ,

iv) S is dense in Ω .

Remark 1 It should be noted that all of the equivalent descriptions of hyperstonean spaces are given in terms of
concepts from functional analysis. As far as we know, there is still no definition made entirely in pure topological
terms. Therefore, the problem of topological characterization of hyperstonean spaces still stands open.

Remark 2 Although there are some important applications of hyperstonean spaces, it is still mostly an unex-
ploited area in analysis. Our expectation is that it might turn out to be a promising field of research.

2. The results
The fact that an arbitrary positive measure is equivalent to a perfect one reduces integration in Lebesgue
sense (with respect to an arbitrary positive measure) to integration with respect to a perfect Borel measure
on a Stonean space. In the new setting, measurable sets may be replaced by clopen sets and measurable
simple functions by simple functions of the form

∑n
i eiχUi , where Ui s are clopen sets and ei s are vectors

from the range space of the measurable functions under consideration. Consequently, each measurable function
(essentially bounded measurable function) is the a.e. limit (a.e. uniform limit) of a sequence of continuous
simple functions.

By definition, a regular Borel measure on a compact space is finite while a perfect measure need not be
so. The relationship between regularity and perfectness of a Borel measure on a Stonean space is as follows:

Theorem 2 A perfect Borel measure on a Stonean space is regular if and only if it is finite.

Proof Let Z be a Stonean space and µ a perfect measure on it. Since by definition a regular Borel measure
on a compact Hausdorff space is finite, if µ is regular, then it has to be finite.

Conversely, we assume that µ is finite, and we show that it is regular.
Since µ is finite, the mapping

f −→
∫
Z

fdµ, f ∈ C(Z)

is a bounded linear functional on C(Z) , and therefore by the well-known Riesz representation theorem there
exists a regular Borel measure ι on Z such that∫

Z

fdµ =

∫
Z

fdι for all f ∈ C(Z).

For each clopen subset G of Z, the characteristic function χG is continuous, and therefore

µ(G) = ι(G). (1)

Next we show that (1) also holds for open sets.

Let U ⊂ Z be an open subset. Since µ is perfect and U is clopen,

µ(U) = µ(U) = ι(U). (2)
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On the other hand, each compact set contained in U has a clopen neighborhood also contained in U . By the
regularity of ι we can find a sequence of clopen sets K1 ⊂ K2 ⊂ . . . ⊂ U such that

ι(K) = µ(K) = µ(K) = lim
n
µ(Kn) = lim

n
ι(Kn) = ι(K) = ι(U) (3)

where K =
∪
Kn.

Since 0 = ι(U \K) ≥ ι(U \K) , and ι ≥ 0, ι(U \K) = 0 , and since ι coincides with µ at clopen sets
and µ is perfect, we conclude that the open set U \K must be empty or else (1) will be violated, which implies
that U ⊂ K.

Thus, it follows that
µ(K) = ι(K) = ι(K) = µ(K) ≤ µ(U) ≤ µ(K),

so we have equalities throughout. From this and (3) one obtains

µ(U) = µ(K) = ι(K) = ι(U),

which proves that (1) also holds for all open sets, and therefore for closed sets as well.
This last result implies that µ and ν coincide at Gδ and Fσ sets. Again using the regularity of ι , for

each Borel set B one can find Gδ and Fσ sets such that Gδ ⊃ B ⊃ Fσ and

µ(Gδ) = ι(Gδ) = ι(B) = ι(Fσ) = µ(Fσ)

and consequently µ(B) = ι(B). 2

(Recall that a Gδ set is the intersection of a sequence of open sets, and an Fσ set is a countable union
of closed sets.)

We shall fix a hyperstonean measure space (Z,B, µ) ( i.e. Z is Stonean, B is the Borel algebra, and µ is
perfect), and it will remain fixed throughout the rest of the paper.

As an application of the preceding theorem, we obtain the following important corollary:

Corollary 1 Any Lp space with 1 ≤ p < ∞ is isometric to a p-direct sum of Lp spaces of perfect regular
Borel measures.

Proof Given any measure space (X,A, µ), let (Ω,B, µ) be its hyperstonean equivalent, and let {Ωi : i ∈ I}
be any disjoint maximal family of clopen subsets of Ω with strictly positive finite measure. (In view of Zorn’s
lemma, such families exist.) Then for any 1 ≤ p < ∞,

Lp(µ) ≃ Lp(Ω, µ) ≃
∑
i

⊕Lp(Ωi, µi) (p-direct sum),

where µi = µ |Ωi
∀i ∈ I. 2

(Recall that the p -direct sum
∑

i ⊕Ei of Banach spaces Ei consists of generalized sequences x =

{xi : xi ∈ Ei, i ∈ I} such that ∥x∥ = [
∑

i ∥xi∥p]
1
p < ∞.)

We call a maximal family {Bi : i ∈ I} of measurable sets a µ-decomposition of the measure (or of the
measure space) if 0 < µ(Bi) < ∞, and µ(Bi ∩Bj) = 0 ∀i ̸= j in I.
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Theorem 3 Every maximal family of disjoint clopen sets with strictly positive finite measure is a µ-decomposition.

Proof First we recall that each Borel subset F of Z is µ -equivalent to a clopen set; that is, there exists
clopen set V such that µ(F \ V ) + µ(V \ F ) = 0 .

Let {Ωi : i ∈ I} be a maximal family of disjoint clopen sets with strictly positive finite measure.
To prove the theorem it suffices to show that if F is a Borel set of finite measure such that µ(F ∩Ωi) = 0

for all i ∈ I then µ(F ) = 0.

Now let us consider a Borel set F satisfying these conditions and let V be a clopen set equivalent to F.

Since V = (F ∩ V ) ∪ (V \ F ), we have

µ(V ∩ Ωi) = µ(F ∩ V ∩ Ωi) + µ((V \ F ) ∩ Ωi)

= 0

for all i ∈ I, and since the family {Ωi : i ∈ I} is maximal we conclude that V = ∅. Hence, µ(F ) = 0. 2

Corollary 2 µ is σ -finite if and only if each clopen µ-decomposition is countable.

Proof Let G = {Ωi : i ∈ I} be a clopen µ -decomposition (i.e. it is a maximal family of disjoint clopen sets
with strictly positive finite measure).

Let F be a Borel set with finite measure. Since Z \
∪
i

Ωi has measure zero we may assume that F ⊂
∪

Ωi.

Clearly ∑
i

µ(F ∩ Ωi) ≤ µ(F ) < ∞,

which implies that only countably many terms of the series on the left-hand side can be different from zero.
Let J = {i ∈ I : µ(F ∩Ωi) > 0} and let F0 =

∪
j∈J

(F ∩Ωj). Then the set F \ F0 has finite measure and

as in the proof of the preceding theorem its intersection with each Ωi has measure zero, which means that is F

is contained µ a.e. in the union of the countable subfamily {Ωj : j ∈ I} of G.

Now suppose that Z =
∪
k≥1

Fk where Fk s are mutually disjoint and have finite measure.

By the above discussion, for each k, Fk is contained almost everywhere in the union of countable
subfamily Gk of G , which implies that Z is contained a.e. in the union of the countable subfamily

∪
k

Gk of G.

Thus, G =
∪
k≥1

Gk is countable.

The converse is trivial, for if G = {Ωk : k = 1, 2, 3, . . .} is a clopen µ decomposition of µ then
G ∪ {Z \

∪
Ωk} is a countable partition of Z of sets with finite measure. 2

The following theorem establishes a relation between the σ -finiteness of µ and the existence of a finite
perfect measure.

Theorem 4 µ is σ -finite if and only if there exists a perfect regular Borel measure on Z.
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Proof Suppose that µ is σ -finite and let F = {Ωn : n ∈ N} be a clopen µ -decomposition of µ and define ν

on the Borel algebra B as follows:

ν(B) =
∑
n≥1

1

2nµ(Ωn)
µ(B ∩ Ωn), B ∈ B.

The set Z0 = Z \
∪
n
Ωn is null and

ν(Z) ≤
∑
n≥1

1

2n
≤ 1.

Let V ̸= ∅ be any open set. By the maximality of the family F , we must have V ∩ Ωn0
̸= ∅ for some n0.

V ∩ Ωn0
is a nonempty open set, and so it contains a clopen set W with strictly positive finite µ -measure.

From this we obtain

ν(W ) =
∑
n≥1

1

2nµ(Ωn)
µ(W ∩ Ωn) =

1

2n0µ(Ωn0
)
µ(W ) > 0.

Thus, we have shown that every nonempty open set contains a clopen set with strictly positive finite ν -measure.
Now let F be a closed set with empty interior. Then ∀n , F ∩Ωn is a closed set with empty interior, and

so µ(F ∩Ωn) = 0 , ∀n, which implies that ν(F ) = 0. Hence, we have shown that ν is a finite perfect measure,
and therefore, by Theorem 2, it is regular.

Conversely, assume that there exists a perfect regular Borel measure ν on Z and show that µ is σ -finite.
Let f0 = dν

dµ , (the Radon–Nikodým derivative) and fix any clopen µ -decomposition F = {Ωj : j ∈ J} .
Since ν is finite, f0 is µ -integrable, which implies that the support S of f0 is µ -σ -finite. Therefore, as in the
proof of Corollary 2, S is contained µ -a.e. in the union of a countable subfamily {Ωj : j ∈ J} of the family F ,
and so for each i ∈ I \ J, ν(Ωi) = 0, but since ν is perfect this last observation implies that J = I , proving
that the measure µ is σ -finite. 2

Example 1 If D is an uncountable discrete space then none of the perfect measures on βD are σ -finite, but
if D is countable then all of them are σ -finite. In particular, all of the perfect measures on βN are σ -finite.
A perfect measure µ on βN has the following form:

µ =

∞∑
n≥1

anδn,

where each αn > 0, and δn is the unit point mass at n. (This is because of the facts that each singleton {n} is
open, so αn = δn({n}) > 0 , and that µ(βN \ N) = 0.)

More generally, each perfect measure µ on βD , with D discrete, has the form

µ =
∑
x∈D

αxδx, αx>0 ∀x ∈ D.

Remark 3 Unlike the previous ones, the next result is purely topological. It is known that the closure of every
open subset of a Stonean space Z is its Stone–Čech compactification [8 , p. 109] ; however if Z is hyperstonean,
the proof becomes very simple and brief.
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Proof Let U be an open set and W = U. We shall try to prove that every bounded, continuous scalar-valued
function on U can be extended to a continuous function on W .

W is a clopen subset of Z , so it is a hyperstonean space with the perfect measure µ |W on it. Since
µ(W \ U) = 0 (for W \ U is a closed set with empty interior), we have

L1(W,µ) ≃ L1(U, µ) (the isometry here is f −→ f |U ).

We know that
L1(W,µ)∗ ≃ L∞(W,µ) ≃ C(W ) ([1]).

Let g be a bounded continuous scalar function on U and define g0 on W as follows:

g0 = g on U and g0 = 0 on W \ U.

Since g0 ∈ L∞(µ) , there exists a function h in C(W ) such that g0 = h µ a.e., which implies that g0 = h on
U ; that is, h is a continuous extension of g to W. 2

Remark 4 This result is a partial answer to the problem of characterizing hyperstonean spaces in terms of
purely topological terms. It is necessary but not sufficient. There are Stonean spaces that are not hyperstonean;
for instance, the Dedekind completion of C([0, 1],R) is an M -space with a strong unit whose Kakutani space is
Stonean but not hyperstonean ([8 , p. 123]) .

Problem 1 To the best of our knowledge, it is not known whether or not the condition “the closure of every
open subset of a Stonean space is its Stone–Čech compactification” makes the space hyperstonean.

Corollary 3 Either all or none of the perfect measures on a hyperstonean space must be σ -finite.

Theorem 5 Every Stonean space is a topological direct sum of a hyperstonean space and a Stonean space on
which there is no nonzero normal Borel measure.

Proof Let Y be a Stonean space and ν be a normal measure on Y . By definition, the support of ν is the
complement of the largest open set U with ν -measure zero. (This definition is valid for regular Borel measures.)

Since U \ U is a closed set with empty interior and ν is normal, the measure of U \ U is zero, and so,
by the maximality of U , we conclude that U is clopen. Consequently, the support of ν is clopen.

Now let W denote the closure of the supports of all the normal measures on Y, and let V ⊂ Y be any
open set. V ∩W is an open subset of W (as a subspace). Since V is also clopen, V ∩W, which is the closure
of V ∩W in the subspace W, is a clopen subset of W. This discussion shows that W is a Stonean space and
the supports of all the normal measures on W are dense in W. Hence, W is a hyperstonean space, and clearly
the largest such subspace of Y. Since W is clopen in Y, then so is its complement ∆. Hence, Y = W ⊕∆, and
clearly there is no nonzero normal measure on ∆. 2
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