
Sparsity-driven weighted ensemble classifier

Atilla Özgür 1 Fatih Nar 2 Hamit Erdem 3

1 Logistics Engineering, Jacobs University,
Campus Ring 1 28759 Bremen, Germany
E-mail: a.oezguer@jacobs-university.de

2 Computer Engineering, Konya Food and Agriculture University,
Dede Korkut Mah. Beyşehir Cad. No:9 ,

Meram / Konya / Turkey
E-mail: fatih.nar@gidatarim.edu.tr

3 Electrical Engineering, Başkent University,
Bağlıca Kampüsü Fatih Sultan Mahallesi Eskişehir Yolu 18. km ,

Ankara 06790, Turkey
E-mail: herdem@baskent.edu.tr

Abstract

In this study, a novel sparsity-driven weighted ensemble classifier (SDWEC) that improves classification
accuracy and minimizes the number of classifiers is proposed. Using pre-trained classifiers, an ensemble
in which base classifiers votes according to assigned weights is formed. These assigned weights directly
affect classifier accuracy. In the proposed method, ensemble weights finding problem is modeled as a
cost function with the following terms: (a) a data fidelity term aiming to decrease misclassification rate,
(b) a sparsity term aiming to decrease the number of classifiers, and (c) a non-negativity constraint on
the weights of the classifiers. As the proposed cost function is non-convex thus hard to solve, convex
relaxation techniques and novel approximations are employed to obtain a numerically efficient solution.
Sparsity term of cost function allows trade-off between accuracy and testing time when needed. The
efficiency of SDWEC was tested on 11 datasets and compared with the state-of-the art classifier ensemble
methods. The results show that SDWEC provides better or similar accuracy levels using fewer classifiers
and reduces testing time for ensemble.

Keywords: Machine Learning, Ensemble, Convex Relaxation, Classification, Classifier Ensembles

1. Introduction

The accuracy of classification can be improved by
using more than one classifier. This process is
known by different names in different domains such
as classifier fusion, classifier ensemble, classifier
combination, mixture of experts, committees of neu-
ral networks, or voting pool of classifiers etc [1].

Ensembles can be categorized as weak or strong
depending on the used classifier type [2]. The
weak classifiers use machine learning algorithms
with fast training times and lower classification ac-
curacy. Due to fast training times, weak classifier
ensembles contain high number of classifiers, such
as 50–200 classifiers. On the other hand, strong
classifiers have slow training times and high gener-

962

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Received 20 April 2017

Accepted 5 April 2018

alization accuracy individually. Due to slow training
times, strong classifier ensembles contain as low as
3–7 classifiers.

Although using more classifiers increases gener-
alization performance of ensemble classifier, this de-
grades after a while. To put it in another way, sim-
ilar classifiers do not contribute to overall accuracy
very much. This deficiency can be removed by in-
creasing the classifier diversity [1, 3, 4]. Therefore,
finding new diversity measurements [5] and improv-
ing existing ones [4] are an ongoing research effort
in ensemble studies.

Research in the ensembles can be categorized
into two groups according to their construction
methods: (a) Combining pre-trained classifiers. (b)
Constructing classifiers and ensemble together.

Methods in the first group (a) are the easiest to
understand and the mainly used methods to create
ensembles. The classifiers are trained using train-
ing set and combined in an ensemble. The simplest
method to ensemble classifiers is majority (plural-
ity) voting. In the majority voting method, every
classifier in an ensemble gets a single vote for re-
sult. The output is the most voted result. A well-
known approach that uses majority voting in its deci-
sion stage is Bootstrap aggregating algorithm (Bag-
ging) [6]. Bagging trains weak classifiers from same
dataset using uniform sampling with replacement,
then classifiers are combined using simple majority
voting [7]. Instead of using a single vote for every
classifier, weighted voting might be used [7]. Stan-
dard Weighted majority voting (WMV) algorithm
[7] uses accuracy of individual classifiers for find-
ing weights. Classifiers that have better accuracies
in training step get higher weights for their votes,
and become more effective in voting.

Kuncheva and Rodriguez [8] proposed a prob-
abilistic framework for classifier ensembles. This
framework shows relationships between four com-
biners: majority voting, weighted voting, recall vot-
ing, and naive bayes voting. According to the ex-
periments of Kuncheva and Rodrı́guez [8] on 73
benchmark datasets, there is no definite best com-
biner among those four. These results conform to
“no free lunch theorem” [9]. No universal classifier
exists that is suitable for every problem. Numerous

other methods has been proposed for finding weights
to combine pre-trained classifiers, Table 1. Methods
in Table 1 are also summarized in Section 1.1. Simi-
lar to approaches in Table 1, main focus of this study
is to present a new approach for finding weights in
an ensemble that uses pre-trained classifiers using
convex optimization techniques.

In the second categorization (b), ensemble con-
struction and classifier construction affect each
other. Adaboost [10] is a well known example for
this categorization that trains weak classifiers itera-
tively and adds them to ensemble. Different from
bagging, subset creation is not randomized in boost-
ing. At each iteration, subsets are obtained using
results of previous iterations. That is miss-classified
data in previous subsets are more likely included. In
classifier ensemble, standard weighted majority vot-
ing is used.

Gurram and Kwon [11] used similar approach to
classify remote sensing images. Randomly selected
features were used to train weak SVM classifiers.
Optimization process of training and combination of
these classifiers were done together. Lee et al. [12]
combined neural network weak classifiers in their
ensemble. Genetic algorithms were used for find-
ing weights for neural network neurons and increase
diversity among neural networks. Then, these di-
verse neural networks were combined using negative
correlation rule. Neural networks were trained and
combined in one step. Tian and Fend [13] proposed
an approach that combines feature sub-selection and
ensemble optimization. They proposed three-term
cost function: a classification accuracy term, a di-
versity term and a feature size term. They solved
this ensemble cost function using population based
heuristics optimization. Zhang et al. [14] used Ker-
nel sparse representation based classifiers for en-
semble in face recognition domain. Features were
projected to higher dimensions using kernels, then
sparse representation of these features were found
using optimization techniques. Similarly, Kim et
al. [15] proposed ensemble approach for biologi-
cal data. Their approach were similar to boosting
but they selected sparse features in their weak clas-
sifiers. Özgür and Erdem [16] used Genetic algo-
rithms to select features and find weights for clas-

963

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

Table 1: Ensemble weights finding studies that use pre-trained classifiers
Study Year Classifiers Method Size Sparse Cost Function Regularizer Notes

Sylvester and Chawla [17] 2006 12 Different Classifiers Genetic Algorithms 120 No No Information No Information
Li and Zhou [18] 2009 Decision Tree Quadratic Programming 100 Yes Hinge Loss L1
Kim et al. [19] 2011 Decision Tree Matrix Decomposition 64 No Indicator Loss No Regularization
Mao et al. [20] 2011 Decision Tree, SVM1 Matching Pursuit 100 Yes Sign Loss No Regularization
Zhang and Zhou [21] 2011 KNN2 Linear Programming 100 Yes Hinge Loss L1
Goldberg and Eckstein [22] 2012 No Information Linear Programming NI Yes Indicator Loss L0

a

Santos et al. [23] 2012 SVM1, MLP3 Genetic Algorithms 6 No No Cost Function No Regularization
Yin et al. [24] 2012 Neural Networks Genetic Algorithms 100 Yes Square Loss L1

b

Meng and Kwok [25] 2013 Decision Tree, SVM1, KNN2 Domain Heuristic 3 No No Cost Function No Regularization
Tinoco et al. [26] 2013 SVM1, MLP3 Linear Programming 6 Yes Hinge Loss L1

d

Hautamaki et al. [27] 2013 Logistic Regression Nelder–Mead 12 Yes cross-entropy [28] L1,L2,L1 +L2
c

Şen and Erdoğan [29] 2013 13 Different Classifiers Convex Opt. 130 Yes Hinge Loss L1 , Group Sparsity
Mao et al. [30] 2013 Decision Tree Singular Value Decomposi-

tion
10 No Absolute Loss No Regularization

Yin et al. [31] 2014 Neural Networks Genetic Algorithms 100 Yes Square Loss L1
e

Yin et al.[32] 2014 Neural Networks Quadratic Programming 100 Yes Square Loss L1
f

Zhang et al. [3] 2014 5 Different Classifiers Differential Evolution 5 No No Cost Function No Regularization
Mao et al. [33] 2015 Decision Tree Quadratic Form 200 No Square Loss L1

1 SVM Support Vector Machines.
2 KNN K-Nearest Neighbor
3 MLP Multi Layer Perceptron.

a No experimental results.
b Diversity Term Yule’s Q Statistic is used
c Improved version of [23]

d 3 regularizers are compared
e Journal version of [24]
f Convex Quadratic model of [31] and [24]

sifier ensemble in their study. They combined dif-
ferent strong classifiers and experimented on NSL-
KDD dataset.

1.1. Related works: ensembles that combine
pre-trained classifiers

Focus of this study is to combine pre-trained classi-
fiers so that combined accuracy of the ensemble is
better than individual classifiers. This study aims to
accomplish this objective in a sparse manner so that
not all of the classifiers are used in ensemble; there-
fore, weak decision tree classifiers are used in the
experiments. Although some of the other sparse ap-
proaches [11, 14, 15, 34] are mentioned before, in
this section, only ensemble classifiers that proposed
methods to find weights for base classifiers are in-
vestigated.

Sylvester and Chawla [17] proposed differential
evolution to find suitable weights for ensemble base
classifiers. Similar to most heuristic solution tech-
niques, they did not explicitly define cost function,
but use classification accuracy for fitness function.
ID3 decision trees, J48 decision trees (C4.5), JRIP
rule learner (Ripper), Naive Bayes, NBTree (Naive
Bayes trees), One Rule, logistic model trees, logistic
regression, decision stumps, multi-layer perceptron
(MLP), SMO (support vector machine), and 1BK
(k-nearest neighbors) classifiers from Weka toolbox

[35] were used in the experiments.
Li and Zhou [18] modeled ensemble weights

finding problem using cost function that consists of
hinge loss and L1 regularization. This cost function
were minimized using Quadratic programming. De-
cision tree weak classifiers and UCI datasets were
used for experiments. A semi-supervised version
was also suggested.

Zhang and Zhou [21] formulated weights finding
problem using three different cost functions: LP1
uses a cost function that consists of Hinge loss only.
LP2 uses a cost function that consists of Hinge loss
and L1 regularization. LP3 allows weights to be neg-
ative. These cost functions were minimized using
linear programming. They used K-Nearest neigh-
bor (KNN) algorithm as base classifiers and UCI
datasets in their experiments.

Kim et al. [19] proposed an approach similar to
boosting. They considered two weight vectors, one
for classifier and one for instances. Hard to classify
instances get more weight and correspondingly they
affect weight vector more. Different from boost-
ing, their approach works with pre-trained classi-
fiers. Weights for ensemble was found using matrix
decomposition and an iterative algorithm. Decision
tree weak classifiers and UCI datasets were used for
experiments.

Mao et al. [20] proposed matching pursuit al-

964

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

gorithm to find weights for ensemble base classi-
fiers. Since matching pursuit is a sparse approxima-
tion algorithm [36], their approach include sparsity.
Decision Tree and SVM weak classifiers and UCI
datasets were used for experiments.

Goldberg and Eckstein [22] modeled weights
finding problem with indicator loss function and L0
regularization function. According to Goldberg and
Eckstein [22], this problem is NP-hard in special
cases. They gave different relaxation strategies to
solve this problem and gave their relaxation bounds.
Different from other studies, this study was purely
theoretical.

Santos et al. [23] combined MLP and SVM al-
gorithms to classify remote sensing images. They
did not give any explicit cost function but used ge-
netic algorithms for finding weights. An improved
version of their studies [26] modelled weights find-
ing problem using hinge loss and L1 regularization.
This cost function were minimized using linear pro-
gramming. In both versions, remote sensing images
were classified using ensemble of MLP and SVM
classifiers.

Mong and Kwok [25] combined Decision
Tree(J48), K-Nearest Neighbor and SVM classifiers.
They suggest using following domain heuristic for
weights of classifiers: ”...weighted ranking (preci-
sion of false alarm > recall of false alarm > classi-
fication accuracy) is an appropriate and correct way
to decide the weight values with high confidence in
ensemble selection...” [25].

Hautamaki et al. [27] investigated using sparse
ensemble in speaker verification domain. Ensemble
weights finding problem were modeled using cross-
entropy loss function and three different regulariza-
tion functions: L1, L2, and L1 +L2. These cost func-
tions were minimized using Nelder–Mead method.
Logistic regression classifiers were used in experi-
ments.

Yin et al. [24] modeled ensemble weights find-
ing problem with a cost function that consists of the
terms a square loss, L1 regularization and a diver-
sity based-on Yule’s Q statistics. They used neural
network classifiers on 6 UCI datasets in their exper-
iments. In their first study [24], the proposed cost
function were minimized using genetic algorithms.

In their second study [31], the Pascal 2008 webspam
dataset were added to their experiments. Finally,
convex optimization techniques [32] were used to
minimize the same cost function.

Sen and Erdogan [29] modeled ensemble
weights finding problem using a cost function that
consists Hinge loss and two different regulariza-
tion functions, L1 and group sparsity. This cost
function were minimized using convex optimization
techniques. In their experiments, 13 different classi-
fiers were compared on 12 UCI datasets and 3 other
datasets using CVX Toolbox [37, 38].

Zhang et al. [3] proposed Differential Evolu-
tion for finding suitable weights for ensemble base
classifiers. Similar to most heuristic solution tech-
niques, they did not explicitly define cost function,
but use classification accuracy for fitness function.
Decision Tree (J4.8), Naive Bayes, Bayes Net, K-
Nearest Neighbor, and ZeroR classifiers from Weka
toolbox [35] were used in the experiments.

Mao et al. [30] modeled ensemble weights find-
ing problem using a cost function that consists of
absolute loss only. Proposed cost function was min-
imized using 0–1 matrix decomposition. In a later
study [33], Mao et al. proposed a cost function
that consists of square loss and L1 regularization
function. This cost function was minimized using
quadratic form approximation. Both studies used
decision tree weak classifiers and UCI datasets in
experiments.

As can be seen from Table 1, numerous ap-
proaches exist for finding weights in ensemble clas-
sification. Inspired from studies of [16, 21, 30,
33, 39], sparsity-driven weighted ensemble classi-
fier (SDWEC) has been proposed. SDWEC can use
both strong classifiers or weak classifiers for classi-
fier ensemble. In this study, decision tree as a weak
classifier is used as the base classifier since choosing
fewer number of classifiers among large number of
weak classifiers leads to high accuracy with shorter
testing time. Proposed cost function consists of the
following terms: (1) a data fidelity term with sign
function aiming to decrease misclassification rate,
(2) L1-norm sparsity term aiming to decrease the
number of classifiers, and (3) a non-negativity con-
straint on the weights of the classifiers. Cost func-

965

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

tion proposed in SDWEC is hard to solve since it is
non-convex and non-differentiable; thus, (a) the sign
operation is convex relaxed using a novel approxi-
mation, (b) the non-differentiable L1-norm sparsity
term and the non-negativity constraint are approxi-
mated using log-sum-exp and Taylor series. Contri-
butions of SDWEC can be summarized as follows:

1. A new cost function is proposed for ensemble
weights finding problem.

2. This cost function is minimized using novel
convex relaxation and approximation tech-
niques for sign function and absolute value
function.

3. SDWEC provides similar or better classifica-
tion accuracy, while minimizing the number
of classifiers used in the ensemble.

4. According to sparsity level of SDWEC, num-
ber of classifiers used in the ensemble de-
creases; thus, the testing time for whole en-
semble decreases.

5. The sparsity level of SDWEC allows trade-
off between testing accuracy and testing time
when needed.

6. Computational Complexity of SDWEC is
analyzed theoretically and experimentally,
which is linear in number of data rows, num-
ber of classifiers and number of algorithm it-
erations.

2. Sparsity-driven weighted ensemble classifier

An ensemble consists of l number of classifiers
which are trained using training dataset. We aim to
increase ensemble accuracy on test dataset by find-
ing suitable weights for classifiers using validation
dataset. Ensemble weights finding problem is mod-
eled with the following matrix equation.

sgn(


−1 −1 . . . +1
+1 −1 . . . −1

...
...

...
...

−1 +1
+1 −1


︸ ︷︷ ︸

Hmxl


w1
w2
...

wl−1
wl


︸ ︷︷ ︸

wlx1

)≈


y1
y2
...

ym−1
ym


︸ ︷︷ ︸

ymx1

H classifiers results {−1,1}mxl

m number of samples in the validation
dataset

l number of individual classifiers
w classifier weights
y true labels {−1,1}mx1 for the validation

dataset
In this matrix equation, classifiers predictions

are weighted so that obtained prediction for each
data row becomes approximately equal to expected
results. Matrix H consists of l classifier predic-
tions for m data rows that are drawn from validation
dataset. Vector y contains the labels for the valida-
tion dataset. Our aim is to find suitable weights for
w in a sparse manner while preserving condition of
sgn(Hw) ≈ y (sign function). For this model, the
following cost function is proposed:

J(w) =
λ

m

m

∑
s=1

(sgn(Hsw)− ys)
2 +

1
l
||w||11

subject to w > 0
(1)

λ data fidelity coefficient (λ > 0)
Hs sth row vector of matrix H
ys sth label for vector y

In equation 1, the first term acts as a data fidelity
term and minimizes the difference between true la-
bels and ensemble predictions. Base classifiers of
ensemble give binary predictions (−1 or 1) and these
predictions are multiplied with weights through sign
function which leads to {−1,0,1} as an ensemble
result. To make this term independent from data
size, it is divided to m (number of data rows).

The second term is a sparsity term [40] that
forces weights to be sparse [39]; therefore, mini-
mum number of classifiers are utilized. In spar-
sity term, any Lp-norm (0 6 p 6 1) can be used.
Weights become more sparse as p gets closer to 0.

966

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

However, when (0 6 p < 1), sparsity term becomes
non-convex and thus the problem becomes harder to
solve. When p is 0 (L0-norm) then problem becomes
NP-hard [41]. Here, L1-norm is used as a convex re-
laxation of Lp-norm [40, 42]. Similar to the data
fidelity term, this term is also normalized with divi-
sion by l (number of individual classifiers).

The third term is used as a non-negativity con-
straint. Since base binary classifiers use values of
−1 and 1 for class labels, negative weights change
sign of prediction; thus they change class label of
prediction. To avoid this problem, the constraint
term is added to force weights to be non-negative.

Using the |x| = max(−x,x) as the definition of
L1-norm and using the penalty method [43] for
transforming the constraint in the equation 1 to a
penalty term (i.e. w > 0→ max(−wr,0),1 6 r 6 l),
below unconstrained cost function is obtained:

J(n)(w) =
λ

m

m

∑
s=1

(sgn(Hsw)− ys)
2

+
1
l

l

∑
r=1

max(−wr,wr)

+
β (n)

l

l

∑
r=1

max(−wr,0)

(2)

In equation 2, n is the iteration number since
constrained cost function in equation 1 is converted
into series of unconstrained problems using penalty
method. Due to employed penalty method approach,
the constraint w > 0 is better satisfied as the penalty
coefficient β (n) is increased in each iteration where
β (1) > 0 in the first iteration. Equation 2 is a non-
convex function, since sgn function creates jumps on
cost function surface. In addition, max function is
non-differentiable. Functions max and sgn in Equa-
tion 2 are hard to minimize. Therefore, we propose
a novel convex relaxation for sgn as given in equa-
tion 3. Figure 1 shows approximation of sign func-
tion using Equation 3.

sgn(Hsw)≈
Hsw

|Hsŵ|+ ε
= SsHsw (3)

where

Ss = (|Hsŵ|+ ε)−1 (4)

Figure 1: Sign function approximation using equa-
tion 3. Dotted Lines are approximations using Equa-
tion 3 at various points.

In this equation, ε is a small positive constant.
We also introduce a new constant ŵ as a proxy for
w. Therefore, Ss = (|Hsŵ|+ ε)−1 is also a constant.
However, this sgn approximation is only accurate
around introduced constant ŵ. Therefore, the ap-
proximated cost function needs to be solved around
ŵ. Additionally, max function is approximated with
log-sum-exp [44] as follows:

max(−wr,wr)≈
1
γ

log(e−γwr + eγwr) (5)

Accuracy of log-sum-exp approximation be-
comes better as γ , a positive constant, increases.
In double-precision floating-point format [45], val-
ues up to 10308 in magnitude can be represented.
This means that γ|wr| should be less than 710 where
exp(709) ≈ 10308, otherwise exponential function
will produce infinity (∞). At wr = 0, there is no dan-
ger of numerical overflow in exponential terms of a
log-sum-exp approximation; thus, large γ values can
be used. But as |wr| gets larger, there is a danger of
numerical overflow in exponential terms of log-sum-
exp approximation, since eγ|wr| may be out of double
precision floating point upper limit.

To remedy this numerical overflow issue, a novel
adaptive γ approximation is proposed, where γr is
adaptive form of γ and defined as γr = γ(|ŵr|+ε)−1.
The accuracy of approximation can be improved by
decreasing ε or increasing γ . Figure 2 shows pro-
posed adaptive γ and resulting approximations for

967

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

-10 -5 0 5 10

x

0

20

40

60

80

100
A

da
pt

iv
e

ga
m

m
a

(A1) gamma 10.0 , epsilon 0.1

-10 -5 0 5 10

x

0

2

4

6

8

10

12

L
1
 a

pp
ro

xi
m

at
io

n

(A2) L1 approximation using adaptive gamma

-0.1 -0.05 0 0.05 0.1

x (zoomed)

0

0.02

0.04

0.06

0.08

0.1

0.12

L
1
 a

pp
ro

xi
m

at
io

n
zo

om
ed

(A3) Same approximation of A2, zoomed

-10 -5 0 5 10

x

0

2

4

6

8

10

A
da

pt
iv

e
ga

m
m

a

(B1) gamma 10.0 , epsilon 1.0

-10 -5 0 5 10

x

0

2

4

6

8

10

12

L
1
 a

pp
ro

xi
m

at
io

n

(B2) L1 approximation using adaptive gamma

-0.1 -0.05 0 0.05 0.1

x (zoomed)

0

0.02

0.04

0.06

0.08

0.1

0.12

L
1
 a

pp
ro

xi
m

at
io

n
zo

om
ed

(B3) Same approximation of B2, zoomed

Figure 2: Adaptive gamma (γ1) L1 Approximation with different ε values.

two different set of values (γ = 10,ε = 0.1) and
(γ = 10,ε = 1).

Validity of the approximation can be checked by
taking the limits at −∞, 0, and +∞ with respect to
wr. These limits are −x, ε log2

λr
, and x when wr goes

to −∞,0, and +∞. As |x| gets larger, dependency to
γ decreases; thus, proposed adaptive γ approxima-
tion is less prone to numerical overflow compared to
standard log-sum-exp approximation.

Regularization term given in equation 6 is added
to the unconstrained cost function (equation 2)
since approximated cost function needs to be solved
around ŵ. This new regularization term forces solu-
tion to be around ŵ by imposing a quadratic penalty
between solution and ŵ. Due to this new regu-

larization term, solution in each iteration will be
changed slowly; thus, this new term is called as
slow-step regularization. The main drawback of
penalty method is the need to increase penalty coef-
ficient in each iteration, theoretically up to infinity,
that leads to ill-conditioning in the minimization of
the cost function. However, increase of β (n) in each
iteration is not needed since during the minimization
changes in the solution will be small. These small
changes is accomplished due to employed slow-step
regularization. Therefore, penalty coefficient is used
as a constant β with a small value (i.e β < 102)
for all iterations. Note that, using a small value
for penalty coefficient β leads to numerically well-
posed minimization problem.

968

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

1
l

l

∑
r=1

(wr− ŵr)
2 (6)

Application of adaptive γ approximation leads to
the following equations:

max(−wr,wr)≈
1
γr

log(e−γrwr + eγrwr) (7)

βmax(−wr,0)≈
β

γr
log(e−γrwr +1) = P(wr) (8)

Use of slow-step regularization in equation 6 and
log-sum-exp approximation with adaptive γ leads to
the cost function shown in equation 9.

J(n)(w) =
λ

m

m

∑
s=1

(SsHsw− ys)
2

+
1
l

l

∑
r=1

1
γr

log(e−γrwr + eγrwr)

+
1
l

l

∑
r=1

β

γr
log(e−γrwr +1)

+
1
l

l

∑
r=1

(wr− ŵr)
2

(9)

In order to achieve a second-order accuracy and
to obtain a linear solution, after taking the deriva-
tive of the cost function, equation 9 is expanded as
a second-order Taylor series centered on ŵr, leading
to equation 10.

J(n)(w) =
λ

m

m

∑
s=1

(SsHsw− ys)
2

+
1
l

l

∑
r=1

(Ar +Brwr +Crw2
r)

+
1
l

l

∑
r=1

(wr− ŵr)
2

(10)

In equation 10, Ar represents constants terms
while Br and Cr are the coefficients of the terms wr
and w2

r , respectively. If wr values differ significantly

from constant point, ŵr, Taylor approximation di-
verges from true cost function. In proposed method,
employed slow-step regularization also ensures the
accuracy of Taylor approximations.

Equation 10 can be written in a matrix-vector
form as follows:

J(n)(w) =
λ

m
(SHw− y)ᵀ(SHw− y)

+
1
l
(vᵀA~1+ vᵀBw+wᵀCw)

+
1
l
(w− ŵ)ᵀ(w− ŵ)

(11)

S matrix form of Ss
~1 vector of ones
vA vector form of Ar

vB vector form of Br

C diagonal matrix form of Cr
Equation 11 is strictly convex (see appendix for

the details) thus it has a unique global minimum.
Therefore, to minimize J(n)(w) in Equation 11, the
derivative with respect to w is taken and is equalized
to zero. This leads to system of linear equations:

Mw = b

where

M =
2λ

m
(SH)ᵀ(SH)+

2
l
(C+ I)

b =
2λ

m
(SH)ᵀy+

2ŵ− vB

l

(12)

In Equation 12, M is dense, symmetric, real, and
positive definite matrix with size of l× l.

Final model is solved using algorithm 1 itera-
tively. Due to the employed numerical approxima-
tions and using constant β , small negative weights
may occur around zero. Since our feasible set is
w > 0, back projection to this set is performed af-
ter solving linear system at each iteration in algo-
rithm 1. This kind of back-projection to feasible do-
main is commonly used [46]. Additionally, small
weights in ensemble do not contribute to overall ac-
curacy; therefore, these small weights are thresh-
olded after iterations are completed.

969

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

0 5 10 15 20 25
0

0.2

0.4

0.6
ionosphereP

0 5 10 15 20 25
0

0.2

0.4

0.6
wine

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

heartC

0 5 10 15 20 25iteration
0

0.1

0.2

0.3

0.4

0.5

0.6

co
st

 v
al

ue

NSL-KDDNon-convex
Convex-relaxed

Figure 3: Cost function minimization for 4 datasets (Non-convex equation 2 vs convex-relaxed equation 11).

Algorithm 1 SDWEC Pseudo code
1: H,y,λ ,β ,γ,ε are initialized

2: w←~1
3: m, l← size o f Hmxl
4: k← 25 . Maximum Iteration

5: for n = 1 to k do
6: ŵ← w

7: γr← γ

|ŵ|+ε

8: construct S as diagonal form of Ss

9: construct vB and C

10: M← 2λ

m (SH)ᵀ(SH)+ 2
l (C+ I)

11: b← 2λ

m (SH)ᵀy+ 2ŵ−vB
l

12: solve Mw = b

13: w = max(w,0) . Back projection to w > 0
14: end for

15: wthreshold = argminwr(P(wr)−10−3)2

16: w =

{
w i f w > wthreshold
0 otherwise

An example run of Algorithm 1 can be seen in
Figure 3, where cost values for equations 2 and 11
decrease steadily. As seen in Figure 3, the differ-
ence between non-convex cost function and its con-
vex relaxation is minimal especially in the final it-
erations. This shows that two functions converge to
very similar values. Since non-convex Equation 2

and convex Equation 11 are converged to similar
points, this converged points are within close prox-
imity of the global minimum. Non-convex Equa-
tion 2 and convex-relaxed Equation 11 are close to
each other due to the slow-step regularization term
and employed iterative approach for numerical min-
imization. These results show success of the pro-
posed approximations.

3. Experimental results

The performance of SDWEC has been tested on 11
datasets; 10 UCI datasets and NSL-KDD [47]. NSL-
KDD is a popular database for intrusion detection
[47, 48, 49]. In all ensemble methods, 200 base
decision tree classifiers, Classification And Regres-
sion Trees (CART) [50] are used. SDWEC has been
compared with the following algorithms : Single
decision tree classifier (CART) [50], bagging [6],
WMV [7], and state-of-the-art ensemble QFWEC
[33]. Each dataset is divided to training (80%), val-
idation (10%), and testing (10%) datasets. This pro-
cess has been repeated 10 times for cross validation.
Mean values have been used in Table 2. The accu-
racy values for QFWEC in Table 2 are higher than
original publication [33] since weights are found
using validation dataset instead of training dataset,
which provides better generalization.

SDWEC finds weights of ensemble for pre-
trained classifiers; thus, it is divided into 3 sub tasks.

970

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

1. Training base classifiers on training dataset:
This sub task is common for the ensemble
methods which aims to combine pre-trained
classifiers. Employed pre-trained classifier
can be a weak classifier or a strong classi-
fier where generally weak classifiers are faster
to train with lower accuracy and strong clas-
sifiers are slower to train with higher accu-
racy. Training time of base classifiers de-
pends on training complexity of the method
which is dependent to the number of data
in the training dataset (p), number of fea-
tures (d), number of classes (i.e. binary,
multi-label), and data characteristics. Com-
putational (time) complexity of base classifier
training are independent from the proposed
SDWEC method; thus, one can use a base
classifier of his choice. SDWEC aims to use
few number of classifiers among trained l base
classifiers; therefore, weak decision tree clas-
sifiers (CART) [50] are used in the experi-
ments.

2. Finding ensemble weights on validation
dataset (SDWEC training): SDWEC finds the
ensemble weights of base classifiers using y
and H. Here, y consists of true labels and H
consists of l classifier predictions for m data
rows for the validation dataset. Prediction
speed of creating the matrix H depends on
the choice of base classifier, number of data
in the validation dataset (m), number of fea-
tures (d), number of classes (i.e. binary), and
data characteristics. So, this study only in-
vestigates the computational complexity (see
Table 4) and execution time (see Figure 6) of
the proposed SDWEC training method (see
Algorithm 1) for the ensemble weight find-
ing. Note that, computational complexity of
the SDWEC training only depends on number
of data in validation set (m), number of classi-
fiers (l), and number of algorithm iteration (k)
(see table 3).

3. Applying ensemble on real-world data (i.e.
test dataset): Prediction time of SDWEC for
test data (or unseen real-world data) depends

on base classifiers prediction speed and num-
ber of base classifiers selected by SDWEC
method (Algorithm 1). As the weights (w) of
ensemble becomes more sparse (fewer non-
zero elements in the solution w) fewer base
classifiers are used in testing phase. Thus,
execution time of the testing time decreases
as the weights become sparser independent of
the employed base classifier. In this study,
weak decision tree classifier is used as a base
classifier since it is fast in training and predic-
tion; thus, testing time of the SDWEC mostly
depends on the sparsity of the obtained en-
semble weights.

3.1. Experimental results: sparsity

The principle of parsimony (sparsity) states that sim-
ple explanation should be preferred to complicated
ones [40]. Sparsity mostly used for feature selec-
tion in machine learning. In our study, principle
of sparsity is used for selecting subset of classifiers
among weak classifiers. During experiments, spar-
sity definition given in equation 13 is used where
S(w) = 0 corresponds to least sparse solution while
solution becomes more sparse as S(w) gets closer to
1. According to dataset and hyper-parameters used,
SDWEC achieves different sparsity levels. When
SDWEC applied to 11 different datasets, sparsity
levels between 0.80 and 0.88 has been achieved
(Figure 4). This means that among 200 weak clas-
sifiers, 24 classifiers (sparsity level of 0.88) to 40
classifiers (sparsity level of 0.80) are used in ensem-
bles.

S(w) = 1− 1
l
||w||0 (13)

where

||w||0 = #(r|wr 6= 0), (1 6 r 6 l) (14)

Here, ||w||0 is the L0-norm of a vector w. Math-
ematically speaking, L0-norm is not a proper norm
since it is not absolutely homogeneous while it sat-
isfies other norm properties. In practice, L0-norm is
a cardinality function which has its definition in the
form of Lp-norm for counting the number of non-
zero elements in a given vector.

971

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

1

1.2

w
ei

gh
ts

ionosphereP sparsity 0.89

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

w
ei

gh
ts

wine sparsity 0.87

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

1

1.2

w
ei

gh
ts

heartC sparsity 0.88

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

w
ei

gh
ts

NSL-KDD sparsity 0.8

Figure 4: 4 Datasets and their sparsity levels (λ = 1,β = 10,γ = 20,ε = 0.1).

972

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

Two different results with different sparsity val-
ues (A and B), chosen from Figure 5 have been pro-
vided in Table 2. SDWEC-A has no sparsity, all 200
base classifiers have been used in ensemble; thus,
it has superior performance at the cost of testing
time. SDWEC-A has best accuracy values in 4 out
of 10 datasets and it is very close to top performing
ones in others. QFWEC is only slightly more ac-
curate in 4 datasets comparing to SDWEC-A while
SDWEC-A is only slightly more accurate comparing
to QFWEC in other 4 datasets. SDWEC provides
similar accuracies with the best performing method
(QFWEC) since both QFWEC and SDWEC-A use
all base classifiers. SDWEC-B has 0.90 sparsity,
20 of 200 base classifiers have been used in en-
semble; nonetheless, it has best accuracy values in
2 out of 10 datasets. Besides, its accuracy val-
ues are marginally lower (about 2%) but its testing
time is significantly better (90%) than the other ap-
proaches. Testing time of the methods in Table 2 is
defined as (1− S(.))T(l) where S(.) is the sparsity
provided by the ensemble method (see equation 13)
and T(l) is the testing time for all base classifiers.
SDWEC-B has 10 times faster testing time compar-
ing to QFWEC since S(.) is 0 for QFWEC and 0.9
for SDWEC-B.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
sparsity

0.8

0.82

0.84

0.86

0.88

0.9

0.92

a
c
c
u
ra
c
y
te
st

SDWEC-A SDWEC-B

Figure 5: Sparsity vs accuracy of SDWEC. The
sparsity and accuracy values come from the mean
of 11 datasets. Corresponding values can be seen in
Table 2.

Table 2: Comparison of accuracies (sparsity val-
ues are given in parentheses)

Datasets QFWEC SDWEC-A SDWEC-B WMV bagging singleC

breast 0.9736 0.9737 (0) 0.9532 (0.90) 0.9355 0.9722 0.9400
heartC 0.8085 0.8186 (0) 0.8279 (0.90) 0.8118 0.8118 0.7268

ionosphere 0.9344 0.9371 (0) 0.9427 (0.92) 0.9371 0.9342 0.8799
sonarP 0.8088 0.8136 (0) 0.8126 (0.88) 0.7893 0.8088 0.7367

vehicleP 0.9788 0.9693 (0) 0.9539 (0.91) 0.9681 0.9670 0.9634
voteP 0.9576 0.9703 (0) 0.9525 (0.84) 0.8509 0.9703 0.9533

waveform 0.8812 0.8652 (0) 0.8600 (0.93) 0.8634 0.8620 0.8220
wdbcP 0.9595 0.9507 (0) 0.9418 (0.88) 0.9489 0.9507 0.9138

wine 0.9722 0.9722 (0) 0.9605 (0.89) 0.7514 0.9719 0.9500
wpbcP 0.7989 0.8036 (0) 0.7477 (0.91) 0.7850 0.7750 0.6911

NSL-KDD 0.9828 0.9766 (0) 0.9849 (0.88) 0.9610 0.9613 0.9976

SDWEC-A λ = 0.1 β = 35 γ = 5 ε = 0.1 , Mean sparsity 0.00
SDWEC-B λ = 10 β = 15 γ = 15 ε = 1.0, Mean sparsity 0.90

3.2. Computational Complexity Analysis

In this section, computational complexity of
SDWEC (Algorithm 1) has been analyzed. First,
computational complexity of every pseudo-code line
in Algorithm 1 is given in table 3 and then overall
computational complexity is determined. In Table 3,
m stands for the number of data in the validation
dataset, l stands for the number of base classifiers,
and k stands for the iteration count.

Table 3: Computational complexity of SDWEC
Line Code in Alg 1 Complexity Notes

6 ŵ← w O(l)

7 γr← γ

|ŵ|+ε
O(l)

8 construct S as diagonal
form of Ss

O(ml) S ← Ss sparse
diagonal matrix
(m×m) (Eq 4)

9 vB O(l)
9 C O(l) C sparse diagonal

matrix

10 SH O(ml) X
m×l

= S
m×m
× H

m×l
10 XᵀX O(l3) Xᵀ : O(l2),

XᵀX : O(l3)

10 M← 2λ

m [XᵀX]+ 2(C+I)
l O(l3 + l2)

11 Xᵀy O(l2)

11 2ŵ−VB
l O(l)

11 b← 2λ

m Xᵀy+ 2ŵ−VB
l O(l2 + l)

12 solve Mw = b O(l3) Cholesky solver

13 w = max(w,0) O(l)

M is dense, symmetric, real, and positive definite.
Cholesky solver is used to solve Mw = b, O(2

3 l3).

973

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

Computational complexity inside the for loop is
O(ml)+C1O(l3)+C2O(l2)+C3O(l). Since l� m,
dominant term is O(ml) for the SH multiplication in
line 10 of the Algorithm 1, where S is a diagonal
matrix. Our iteration count is k, then final computa-
tional complexity of SDWEC is O(kml), that is lin-
ear in k, m, and l (see Table 4 and Figure 6). This
computational complexity analysis shows the com-
putational efficiency of the proposed numerical min-
imization.

Table 4 shows training time (weight finding) of
SDWEC on various datasets. Note that, H is an
input to the Algorithm 1 and calculated as a prior
step; thus, training times given in Table 4 only cor-
responds to SDWEC training. In this experiment,
execution time is only dependent on number of rows
(m) and number of classifiers (l) since fixed itera-
tion count is used (k = 25). In training set, NSL-
KDD dataset (100778 instances) has 25 times more
instances than waveform dataset (4000 instances).
And training time of NSL-KDD (25.95) is about 25
times of waveform (0.96). In Figure 6, SDWEC
training times are shown for 3 datasets with differ-
ent number of data (m), different number of classi-
fiers (l), and for fixed iteration count. As seen in Ta-
ble 4 and Figure 6, practical execution times are in
alignment with theoretical computational complex-
ity analysis. Slight differences between theoretical
analysis and actual execution times are due to imple-
mentation issues and caching in CPU architectures.

Table 4: SDWEC training time on various datasets,
Dataset Rows (m) Time (sec.) l classifier count

l = 100 l = 200 l = 500 l = 1000

breast-cancer 547 0.05 0.10 0.48 1.63
ionosphereP 280 0.04 0.07 0.31 1.01
wpbcP 155 0.03 0.06 0.26 0.89
wdbcP 456 0.05 0.09 0.44 1.34
wine 143 0.03 0.05 0.23 0.91
waveform 4000 0.43 0.96 3.01 7.78
voteP 186 0.03 0.07 0.24 0.97
vehicleP 667 0.06 0.18 0.73 1.83
sonarP 167 0.03 0.06 0.23 0.83
heartC 239 0.03 0.07 0.25 1.02
NSL-KDD 100778 12.73 25.95 80.23 204.59

100 200 350 500 650 800 1000
0

50

100

150

200

S
D

W
E

C
 tr

ai
ni

ng
 ti

m
e

(s
ec

.)

Figure 6: Number of classifier (l) versus SDWEC
training time (see Table 4).

4. Conclusion

In this article, a novel sparsity driven ensemble
classifier method, SDWEC, has been presented.
An efficient and accurate solution for original cost
function (hard to minimize, non-convex, and non-
differentiable) has been developed. A novel con-
vex relaxation technique for sign function, and a
novel adaptive log-sum-exp approximation for the
approximation of max function that reduces numer-
ical overflows are proposed. Computational com-
plexity of SDWEC has been investigated theoreti-
cally and experimentally. SDWEC training has a
linear computational complexity in number of clas-
sifier used (l), number of instances in the valida-
tion dataset (m), and number of algorithm iterations
(k). SDWEC has been compared with other en-
semble methods in well-known UCI and NSL-KDD
datasets. According to the experiments, SDWEC de-
creases number of classifiers used in ensemble with-
out significant loss of accuracy. By tuning parame-
ters of SDWEC, a more sparse ensemble –thus, bet-
ter testing time– can be obtained with a small de-
crease in accuracy.

Appendix

Optimality conditions can be used to show strict
convexity since equation 11 is in matrix-vector form
and differentiable.

In equation 12, first derivative of equation 11 is
equalized to zero and a close-form solution is ob-
tained as a linear system so first order optimality
condition is satisfied.

974

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

Let G be a second derivative (Hessian) of the
cost function J(n)(w) given in the equation 11. A
symmetric matrix G∈Rlxl is called positive definite
(thus J(n)(w) is strictly convex), denoted by G� 0, if
xᵀGx > 0 for every x ∈ Rl with x 6= 0. Lets take the
second derivative of the convex-relaxed cost func-
tion J(n)(w) given in equation 11:

∂ 2J(n)(w)
∂w2 =

2λ

m
(SH)ᵀ(SH)+

2
l

C = G (15)

Lets show that xᵀGx > 0 for all non-zero x:

xᵀ(
2λ

m
(SH)ᵀ(SH)+

2
l

C)x > 0 (16)

If we distribute xᵀ and x from left and right:

2λ

m
xᵀ(SH)ᵀ(SH)x+

2
l

xᵀCx > 0 (17)

Since λ , m, and l are all positive we just need to
show that xᵀ(SH)ᵀ(SH)x > 0 and xᵀCx > 0:

xᵀ(SH)ᵀ(SH)x > 0→ (SHx)ᵀ(SHx)> 0 (18)

Lets define z as z = SHx, then zᵀz > 0 since S
is a diagonal matrix with all positive elements (see
equation 4), H contains non-zero elements {−1,1},
and x is non-zero vector.

C is a diagonal matrix with diagonal elements Cr,
1 6 r 6 l, which are defined as below (from second
order Taylor approximation):

Cr =
γr(4u2

r +8u3
r +4u4

r +βur +2βu3
r +βu5

r)

2(u3
r +u2

r +ur +1)2

(19)

where ur = eŵrγr . Here, β is a positive constant,
γr = γ(|ŵr|+ε)−1 is always positive since γ > 0, and
ur is always positive since ŵrγr > 0. Thus, xᵀCx > 0
is satisfied since Cr is always positive.

Therefore, both first order optimality conditions
and second order optimality conditions are satis-
fied which shows that cost function J(n)(w) given in
equation 11 is strictly convex.

References

[1] L. I. Kuncheva, J. C. Bezdek, and R. P. Duin,
“Decision templates for multiple classifier fu-
sion: an experimental comparison,” Pattern
Recognition, vol. 34, no. 2, pp. 299 – 314,
2001.

[2] Y. Freund and R. E. Schapire, “A desicion-
theoretic generalization of on-line learning
and an application to boosting,” in European
conference on computational learning theory,
pp. 23–37, Springer, 1995.

[3] Y. Zhang, H. Zhang, J. Cai, and B. Yang, “A
weighted voting classifier based on differen-
tial evolution,” Abstract and Applied Analysis,
vol. 2014, p. 6, 2014.

[4] L. I. Kuncheva and C. J. Whitaker, “Measures
of diversity in classifier ensembles and their re-
lationship with the ensemble accuracy,” Ma-
chine Learning, vol. 51, no. 2, pp. 181–207,
2003.

[5] B. Krawczyk and M. Woźniak, “Diversity
measures for one-class classifier ensembles,”
Neurocomputing, vol. 126, pp. 36 – 44, 2014.

[6] L. Breiman, “Bagging predictors,” Machine
Learning, vol. 24, no. 2, pp. 123–140, 1996.

[7] L. I. Kuncheva, Combining pattern classifiers:
methods and algorithms. John Wiley & Sons,
2005.

[8] L. I. Kuncheva and J. J. Rodrı́guez, “A
weighted voting framework for classifiers en-
sembles,” Knowledge and Information Sys-
tems, vol. 38, no. 2, pp. 259–275, 2014.

[9] D. H. Wolpert, The Supervised Learning No-
Free-Lunch Theorems, pp. 25–42. London:
Springer London, 2002.

[10] Y. Freund, R. Schapire, and N. Abe, “A short
introduction to boosting,” Journal of Japanese
Society for Artificial Intelligence, vol. 14,
pp. 771–780, 1999.

975

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

[11] P. Gurram and H. Kwon, “Sparse kernel-based
ensemble learning with fully optimized ker-
nel parameters for hyperspectral classification
problems,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 51, pp. 787–802, Feb
2013.

[12] H. Lee, E. Kim, and W. Pedrycz, “A new se-
lective neural network ensemble with nega-
tive correlation,” Applied Intelligence, vol. 37,
no. 4, pp. 488–498, 2012.

[13] J. Tian and N. Feng, “Adaptive generalized en-
semble construction with feature selection and
its application in recommendation,” Interna-
tional Journal of Computational Intelligence
Systems, vol. 7, no. sup2, pp. 35–43, 2014.

[14] L. Zhang, W.-D. Zhou, and F.-Z. Li, “Ker-
nel sparse representation-based classifier en-
semble for face recognition,” Multimedia Tools
and Applications, vol. 74, no. 1, pp. 123–137,
2015.

[15] S. Kim, F. Scalzo, D. Telesca, and X. Hu,
“Ensemble of sparse classifiers for high-
dimensional biological data,” International
Journal of Data Mining and Bioinformatics,
vol. 12, no. 2, pp. 167–183, 2015.

[16] A. Özgür and H. Erdem, “Feature selection and
multiple classifier fusion using genetic algo-
rithms in intrusion detection systems,” Journal
of the Faculty of Engineering and Architecture
of Gazi University, vol. 33, no. 1, pp. 75–87,
2018.

[17] J. Sylvester and N. V. Chawla, “Evolution-
ary ensemble creation and thinning,” in The
2006 IEEE International Joint Conference on
Neural Network Proceedings, pp. 5148–5155,
2006.

[18] N. Li and Z.-H. Zhou, “Selective ensem-
ble under regularization framework,” in Mul-
tiple Classifier Systems: 8th International
Workshop, MCS 2009, (Berlin, Heidelberg),
pp. 293–303, Springer Berlin Heidelberg,
2009.

[19] H. Kim, H. Kim, H. Moon, and H. Ahn, “A
weight-adjusted voting algorithm for ensem-
bles of classifiers,” Journal of the Korean Sta-
tistical Society, vol. 40, no. 4, pp. 437 – 449,
2011.

[20] S. Mao, L. Jiao, L. Xiong, and S. Gou, “Greedy
optimization classifiers ensemble based on di-
versity,” Pattern Recognition, vol. 44, no. 6,
pp. 1245 – 1261, 2011.

[21] L. Zhang and W.-D. Zhou, “Sparse ensembles
using weighted combination methods based
on linear programming,” Pattern Recognition,
vol. 44, no. 1, pp. 97 – 106, 2011.

[22] N. Goldberg and J. Eckstein, “Sparse weighted
voting classifier selection and its linear pro-
gramming relaxations,” Information Process-
ing Letters, vol. 112, no. 12, pp. 481 – 486,
2012.

[23] A. B. Santos, A. de A. Araújo, and D. Menotti,
“Combiner of classifiers using genetic algo-
rithm for classification of remote sensed hyper-
spectral images,” in 2012 IEEE International
Geoscience and Remote Sensing Symposium,
2012.

[24] X.-C. Yin, K. Huang, H.-W. Hao, K. Iqbal,
and Z.-B. Wang, “Classifier ensemble using a
heuristic learning with sparsity and diversity,”
in Neural Information Processing: 19th Inter-
national Conference, ICONIP 2012, (Berlin,
Heidelberg), 2012.

[25] Y. Meng and L.-F. Kwok, “Enhancing false
alarm reduction using voted ensemble selec-
tion in intrusion detection,” International Jour-
nal of Computational Intelligence Systems,
vol. 6, no. 4, pp. 626–638, 2013.

[26] S. L. J. L. Tinoco, H. G. Santos, D. Menotti,
A. B. Santos, and J. A. dos Santos, “En-
semble of classifiers for remote sensed hy-
perspectral land cover analysis: An approach
based on linear programming and weighted
linear combination,” in 2013 IEEE Interna-
tional Geoscience and Remote Sensing Sympo-
sium - IGARSS, 2013.

976

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

[27] V. Hautamäki, T. Kinnunen, F. Sedlák, K. A.
Lee, B. Ma, and H. Li, “Sparse classifier fu-
sion for speaker verification,” IEEE Transac-
tions on Audio, Speech, and Language Pro-
cessing, vol. 21, pp. 1622–1631, Aug 2013.

[28] C. Bishop, Pattern Recognition and Machine
Learning. Springer-Verlag New York, 2006.

[29] M. U. Sen and H. Erdogan, “Linear classifier
combination and selection using group sparse
regularization and hinge loss,” Pattern Recog-
nition Letters, vol. 34, no. 3, pp. 265 – 274,
2013.

[30] S. Mao, L. Xiong, L. C. Jiao, S. Zhang, and
B. Chen, “Weighted ensemble based on 0-
1 matrix decomposition,” Electronics Letters,
vol. 49, pp. 116–118, January 2013.

[31] X.-C. Yin, K. Huang, H.-W. Hao, K. Iqbal,
and Z.-B. Wang, “A novel classifier ensem-
ble method with sparsity and diversity,” Neu-
rocomputing, vol. 134, pp. 214 – 221, 2014.

[32] X.-C. Yin, K. Huang, C. Yang, and H.-W. Hao,
“Convex ensemble learning with sparsity and
diversity,” Information Fusion, vol. 20, pp. 49
– 59, 2014.

[33] S. Mao, L. Jiao, L. Xiong, S. Gou, B. Chen,
and S.-K. Yeung, “Weighted classifier ensem-
ble based on quadratic form,” Pattern Recogni-
tion, vol. 48, no. 5, pp. 1688 – 1706, 2015.

[34] S. Shukla, J. Sharma, S. Khare, S. Kochkar,
and V. Dharni, “A novel sparse ensemble
pruning algorithm using a new diversity mea-
sure,” in 2015 IEEE International Conference
on Computational Intelligence and Computing
Research (ICCIC), pp. 1–4, Dec 2015.

[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten, “The WEKA
data mining software: an update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[36] S. G. Mallat and Z. Zhang, “Matching pur-
suits with time-frequency dictionaries,” IEEE

Transactions on Signal Processing, vol. 41,
pp. 3397–3415, Dec 1993.

[37] M. Grant and S. Boyd, “CVX: Matlab software
for disciplined convex programming, version
2.1.” http://cvxr.com/cvx, Mar. 2014.

[38] M. Grant and S. Boyd, “Graph implemen-
tations for nonsmooth convex programs,” in
Recent Advances in Learning and Control
(V. Blondel, S. Boyd, and H. Kimura, eds.),
Lecture Notes in Control and Information
Sciences, pp. 95–110, Springer-Verlag Lim-
ited, 2008. http://stanford.edu/~boyd/

graph_dcp.html.

[39] F. Nar, A. Özgür, and A. N. Saran, “Sparsity-
driven change detection in multitemporal sar
images,” IEEE Geoscience and Remote Sens-
ing Letters, vol. 13, no. 7, 2016.

[40] F. Bach, R. Jenatton, J. Mairal, and G. Obozin-
ski, “Optimization with sparsity-inducing
penalties,” Foundations and Trends in Machine
Learning, vol. 4, no. 1, pp. 1–106, 2012.

[41] D. Ge, X. Jiang, and Y. Ye, “A note on the
complexity of l p minimization,” Mathemati-
cal programming, vol. 129, no. 2, pp. 285–299,
2011.

[42] J. A. Tropp, “Just relax: convex program-
ming methods for identifying sparse signals
in noise,” IEEE Transactions on Information
Theory, vol. 52, pp. 1030–1051, March 2006.

[43] D. Bertsekas, Nonlinear Programming.
Athena Scientific, 2016.

[44] S. Boyd and L. Vandenberghe, Convex Opti-
mization. Cambridge University Press, 2004.

[45] “IEEE standard for binary floating-point arith-
metic,” 1985. Note: Standard 754–1985.

[46] T. Pock, D. Cremers, H. Bischof, and
A. Chambolle, “An algorithm for minimizing
the mumford-shah functional,” in 2009 IEEE
12th International Conference on Computer
Vision, pp. 1133–1140, IEEE, 2009.

977

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978

[47] A. Özgür and H. Erdem, “A review of KDD99
dataset usage in intrusion detection and ma-
chine learning between 2010 and 2015,” PeerJ
Preprints, 2016.

[48] M. Albayati and B. Issac, “Analysis of intel-
ligent classifiers and enhancing the detection
accuracy for intrusion detection system,” In-
ternational Journal of Computational Intelli-
gence Systems, vol. 8, no. 5, pp. 841–853,
2015.

[49] J. Hussain, S. Lalmuanawma, and L. Chhakch-
huak, “A two-stage hybrid classification tech-
nique for network intrusion detection system,”
International Journal of Computational Intel-
ligence Systems, vol. 9, no. 5, pp. 863–875,
2016.

[50] L. Breiman, J. Friedman, C. J. Stone, and
R. A. Olshen, Classification and regression
trees. CRC press, 1984.

978

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 962–978
