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We calculate the Schwinger pair-production rates in R3;1 as well as in the positively curved space
S2 × R1;1 for both spin-0 and spin-1

2
particles under the influence of an external SUð2Þ ×Uð1Þ gauge field

producing an additional uniform non-Abelian magnetic field besides the usual uniform Abelian electric
field. To this end, we determine and subsequently make use of the spectrum of the gauged Laplace and Dirac
operators on both the flat and the curved geometries. We find that there are regimes in which the purely non-
Abelian and the Abelian parts of the gauge field strength have either a counterplaying or reinforcing role,
whose overall effect may be to enhance or suppress the pair-production rates. Positive curvature tends to
enhance the latter for spin-0 and suppress it for spin-1

2
fields, while the details of the couplings to the purely

Abelian and the non-Abelian parts of the magnetic field, which are extracted from the spectrum of the
Laplace and Dirac operators on S2, determine the cumulative effect on the pair-production rates. These
features are elaborated in detail.

DOI: 10.1103/PhysRevD.108.105021

I. INTRODUCTION AND SUMMARY OF RESULTS

Elucidating the nonperturbative effects in quantum field
theories is an important area of research on which consid-
erable contemporary efforts are focused. Problems in this
context include a variety of phenomena, some of which are
both conceptually and computationally very difficult and
usually escape a fully satisfactory theoretical description,
such as the confinement of quarks in QCD. Nevertheless,
there are also more tractable problems such as the Casimir
effect [1] and Schwinger pair production [2]. Although
both of these phenomena are conceived as vacuum effects
in QED, the former has already been verified in several
different direct experiments over the past few decades, while
it has not been possible to observe the latter, as the amplitude
for the production of massive particle and antiparticle pairs is
exponentially suppressed with e−m

2π=E and requires a very
strong electric field ≈1018 Vm−1, while it is expected that
the recent technological advances can open new avenues for
exploring QED in intense background fields [3,4].
There have been continual efforts ever since the original

work of Schwinger [2] (and the important earlier works due

to Sauter [5] and Euler and Heisenberg [6]) to look for
alternative mechanisms as well as novel aspects and
features that may enhance the effect and thereby reduce
the electric field strength required for its observation.
Time-dependent electric fields tend to enhance the pair-
production amplitudes at a significant rate [7–9]; never-
theless, experiments conducted using high-intensity laser
beams have not, so far, led to an observational confirmation
(see, for instance, [4] and the references therein). Effects of
inhomogenous electric fields are also addressed in several
papers [10–12] ([13] provides a comprehensive review).
Very recently, it has been reported that a condensed matter
analog involving electrons and holes is observed at the
Dirac point of graphene superlattices [14] and ballistic
graphene transistors [15].
Another possible route to search for enhancement effects,

which was not explored up until very recently, is to consider
physical configurations that allow the produced pairs to be
in bound quantum states as opposed to being free, with the
expectation that the bound state spectrum of the relevant
gauged differential operator in the effective action helps to
effectively ease the suppression due to nonvanishing mass.
Gravitational and magnetic background fields can provide
such physical configurations with charge symmetric binding
and with this motivation, in two recent papers [16,17], in
which one of the present authors (S. K.) is a coauthor,
possible influences of an additional uniform Abelian
magnetic field as well as constant positive and negative
curvature are considered by computing the pair-production
amplitudes in the Minkowski space and the product mani-
folds S2 ×R1;1 and H2 ×R1;1. Results of these papers
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indicated a decrease for spin 0 and increase for spin 1
2
for the

pair-production amplitudes with the applied magnetic field,
while positive curvature enhanced the effect for spin 0 and
suppressed it for spin 1

2
, and the opposite prevailed for the

negative curvature. For spin-1 particles, which were treated
as a part of an SUð2Þ gauge field, it was found that the pair-
production rate increases with the applied magnetic field,
while the positive (negative) curvature acts to suppress
(enhance) the effect [17].
In the present work, we continue along this line of

development and explore the effects of additional uniform
non-Abelian SUð2Þ ×Uð1Þ magnetic gauge field back-
grounds1 on the pair production of spin-0 and spin-1

2
fields

on flat as well as positively curved backgrounds, i.e., in
the Minkowski space R3;1 and the product manifold
S2 ×R1;1, where Uð1Þ provides the usual uniform mag-
netic field in both cases. We assume that both the scalar
and spinor fields are also charged under the SUð2Þ part of
the gauge field background, and, to distinguish this from
the usual spin, we refer to it as the “isospin” degree of
freedom, alluding to the similar uses of the latter termi-
nology in the literature [19–21]. There are a number of
motivations to consider a uniform non-Abelian SUð2Þ ×
Uð1Þ magnetic background which we would like to stress
at this stage. First of all, for both spin-0 and − 1

2
particles

and in both of the background geometries, the energy
spectrum is still quantized, and, hence, the produced pairs
fill bound states,2 and we may expect enhancement in pair-
production amplitudes due to the reasons we have stated in
the previous paragraph. Our models also provide novel
and fully tractable examples in which effects of the
external uniform Yang-Mills fields are completely incor-
porated in the pair-production amplitudes, given the
scarcity of research in exploring this aspect of the effect
apart from a few papers published a long time ago and
limited to only the flat geometry [18,22]. Another com-
pelling source of motivation derives from the recent
advances in condensed matter physics. For instance, cold
atomic gases subjected to time-dependent potentials can
be described by the presence of external artificial Abelian
and non-Abelian gauge fields [23–25]. Also, two-
dimensional electron gases in the presence of Rashba [26]
and/or Dresselhaus [27] type of spin-orbit coupling terms
can be described as electrons exposed to external

non-Abelian magnetic fields [28–31]. Considering these
facts together with the aforementioned pair production like
effects in graphene superlattices and transistors [14,15], there
may perhaps be viable routes to experimentally explore the
possible influences of such artificial non-Abelian fields on
analogs of pair-production-type occurrences in condensed
matter systems in the foreseeable future.
Another quite interesting motivation for studying the

effects of curvature on pair production is our approach’s
possible connections with the recent results reported in [32],
which develops a unified description of Schwinger effect
and a novel gravitational particle production mechanism
based on the heat kernel expansion of the one-loop effective
action. For instance, the authors of [32] compute the particle
production rates due to a real scalar field in a Schwarzschild
background without explicitly invoking the presence of a
event horizon.3 In [34], these results of [32] are conjectured
to be related to the conformal (trace) anomaly, with the pair-
production rates being proportional to the anomalous trace
of the energy-momentum tensor of the relevant matter fields
in the gravitational and/or electromagnetic backgrounds. We
think that investigating any possible connections of the
results of our present paper as well those of [16,17] with the
aforementioned developments provided in [32,34] may lead
to a broader perspective in understanding the different facets
of particle production effects in quantum field theories.
For the spherical geometry, it is important to emphasize

the fundamental role played by the total angular momentum
operators J⃗ ¼ L⃗þ σ⃗

2
and K⃗ ¼ L⃗þ σ⃗

2
þ τ⃗

2
, for spin-0 and − 1

2

particles, respectively, where L⃗ stands for the orbital angular
momentum of the charge-Dirac monopole system and τ⃗

2
and

σ⃗
2
generate the spin and isopin degrees of freedom, respec-

tively. As clearly demonstrated in Appendices C and D, the
spectrum of their associated quadratic Casimir operators is
critical in obtaining the energy spectrum of the spin-0 and
− 1

2
fields, without which the results presented in this paper

for the pair-production amplitudes could not have been
obtained. In other words, we may state that the isometry
group of S2 being also SOð3Þ ≈ SUð2Þ is compatible with
the isospin to form the “total” isometry operator J⃗ acting on
the space and gauge degrees of freedom altogether. This
brings us to recognize an important difference between the
positively and negatively curved background geometries.
As we have already pointed out above, constant negative
curvature background is equally as interesting as the
positively curved one, and as presented in [16] pair-
production amplitudes on H2 ×R1;1 lead to reversed
enhancement or suppression effects between spin-0 and
− 1

2
fields compared to those on S2 ×R1;1. Nevertheless, at

least with the approach used in this paper, it does not appear
possible to obtain the energy spectrum of the particles

1We may note that this configuration is distinct from that
treated in [18], where a component of the uniform SUð2Þ field
strength could be of electric type and could cause the decay of the
vacuum by pair production.

2We also explore the limiting situation in which the Abelian
magnetic charge vanishes, which effectively reduces the magnetic
background to a pure SUð2Þ field. In this case, the energy spectra
for spin-0 and − 1

2
particles in the flat background become

continuous, while they remain quantized in the spherical back-
ground.

3Applicability of the results of [32] to any gravitational field is
being contested in a recent paper [33].
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on H2 in an SUð2Þ ×Uð1Þ background, since the isometry
group ofH2 being SOð2; 1Þ ≃ SUð1; 1Þ cannot be combined
together with the isospin generators, which are spanning an
SUð2Þ, to form operators of the form J⃗ and/or K⃗, which can
be exploited to calculate the energy spectra.4 5

To compute the pair-production amplitudes, we make
use of the spectrum of the gauged Laplacians onR2 and S2,
which are already available in [28], while we derive those
for the square of the Dirac operators for both of the
geometries. The latter are interesting problems in their
own right with several intriguing and novel features, which
includes a detailed account of their zero modes, and we
provide a comprehensive analysis. A brief summary of our
results is as follows. Because of the isospin degree of
freedom, the energy spectrum splits into two branches,
namely, Λþ

n1ðβ0Þ and Λ−
n1ðβ0Þ for the scalar and λþn1ðβ0Þ and

λ−n1ðβ0Þ spinor fields.6 In the flat geometry, similar to the
case of the pure uniform Abelian magnetic field [16], pair
production is, in general, suppressed for spin-0 and
enhanced for spin-1

2
fields with increasing non-Abelian

magnetic field β0 (this is the non-Abelian field strength β
scaled by the square root of the Abelian field B1, i.e.,
β0 ¼ βffiffiffiffi

B1

p , as will be defined in the next section). These

outcomes are mainly being due to monotonic increase of

Λþ
n1ðβ0Þ with β0, which makes the corresponding states

harder to fill by the produced particle-antiparticle pairs due
to higher energy cost in the former (spin-0) and due to the
proliferation of zero energy states λ−0 ðβ0Þ with increasing
degeneracy in the latter7 (spin-1

2
case). However, there are

also some very novel features. For spin-0 fields, for a
certain range of values of β0, Λ−

n1ðβ0Þ becomes less than its
value at β0 ¼ 0, and, therefore, the corresponding levels are
less energy costly to get filled. This leads to the pair-
production rates, which exceed those at β0 ¼ 0 at suffi-
ciently large values of y ¼ B1

E . For β0 < β0c1, these rates
increase further with increasing β, while they decrease with
it for β0c1 < β0 < β0c2, with the estimates for the critical β0

values provided in Sec. II. For spin-1
2
particles, we find that,

for sufficiently small values of y ¼ B1

E , pair-production rates
are further enhanced, since λ−0 ðβ0Þ monotonically decreases
toward λ−0 ðβ0 ¼ 0Þ ¼ 0 with β0, making the corresponding
eigenstates effectively degenerate with the zero energy
states. Nevertheless, as y ¼ B1

E increases, pair-production
rates converge back to that at β0 ¼ 0, since λþ0 ðβ0Þ increases
monotonically with β0 and states with corresponding
energies become energetically costly to be filled, counter-
balancing the effect of the former. All of these features are
elaborated in detail in Sec. II.
In the curved geometry S2 × R1;1, very novel features are

encountered as the continuous parameter α governing the
non-Abelian field strength varies, leading to either a
competition with or further support of the effect (which
may be to enhance or suppress the relative pair-production
(RPP) rates as discussed in [16] and already mentioned
above) of the quantized Abelian magnetic field. For scalar
fields, two critical values of α, which are determined in
terms of the Dirac monopole charge N, govern the RPP
rates between the curved and flat backgrounds. The latter is
measured via the function γ0ðω; α; NÞ, which is defined in
Sec. III. For 0 < α < αc1, γ0ðω; α; NÞ > 1, and it indicates
relatively larger pair production in the curved space, which
tends to converge to the flat space results with increasingN.

For αð1Þc < α < αð2Þc , γ0ðω; α; NÞ is slightly above the value
1 roughly within the interval 0 < ω≲ 1 (i.e., large electric
field or small curvature) but eventually goes below it as ω is
increased further, while we again find γ0ðω; α; NÞ > 1 for

α > αð2Þc , indicating an increasing RPP. Another critical

value of α, namely, αð3Þc ¼ 1
2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N þ 1
p Þ, facilitates the

comparison of the pair-production amplitudes with and
without the non-Abelian field (i.e., α ≠ 0 and α ¼ 0),
which is measured using the function R0ðω; α; NÞ, which
will also be defined in Sec. III. We find that, at large ω,

4One possible route to evade these difficulties encountered on
H2 may be to consider higher-dimensional noncompact spaces,
such as Hn ¼ SOðn;1Þ

SOðnÞ , and gauge the invariant subgroup SOðnÞ or
a subgroup K ⊃ SOðnÞ, i.e., to consider magnetic backgrounds
valued in the Lie algebra of K, in which the spectrum of gauged
Laplacians and Dirac operators may be obtained at least at certain
values of the coupling constants from pure group theoretical
considerations analogous to those used in solving Landau
problem in higher dimensions [35]. Since this is beyond the
scope of our present work, we do not pursue it here any further.

5In analogy with the gauge potential α r⃗×ω⃗
a2 (C3) on S2 and using

the isometrical embedding of H2 in R2;1 with the metric
ðþ;þ;−Þ, it may be tempting to consider Aμ

non-Abelian ¼
1
a2 ε

μνρrνωρ, where −a2 ¼ x2 þ y2 − z2, ½ωμ;ων� ¼ 2iεμνρωρ,
and ω⃗ ¼ ðiσ1; iσ2; σ3Þ are 2 × 2 matrices spanning the two-
dimensional irreducible representation (IRR) of SUð1; 1Þ. ω⃗ is
not a Hermitian basis, since it spans a finite-dimensional IRR of
SUð1; 1Þ, which is noncompact. Although it is possible to define
the “total” isometry operator valued in suð1; 1Þ, to study the
spectrum of its associated quadratic Casimir operator one would
have to work out the tensor products of infinite-dimensional
unitary IRRs (with L⃗ belonging either to the principal continuous
or one of the discrete series) and the two-dimensional IRR in
which Aμ

non-Abelian taken. Thus, it becomes quite cumbersome to
determine the spectrum of the gauged Laplacian on H2, if not
completely nontractable. Incidentally, it may be noted that, on
higher-dimensional spaces such as ultrahyperboloids, it is pos-
sible to obtain the spectrum of Laplacians gauged under non-
compact groups [36].

6Let us remark that the corresponding wave functions for
Λ�
n1ðβ0Þ and λ�n1ðβ0Þ are not the eigenfunctions of the isospin as

explained in Appendices A and B.

7Here, we should either conceive the uniform magnetic field to
be over a finite portion of the space or introduce an infrared cutoff
via a mass term. We use the latter option in this paper, as will be
discussed in the ensuing sections.
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R0ðω; α; NÞ → ∞; 1
2
Nþ2
Nþ1

; 0, for α <;¼; > αð3Þc , indicating
enhanced, saturated, and suppressed pair-production ampli-

tudes, respectively. We also see R0ðω; αð3Þc ; NÞ converging
to 1

2
at large N and matching with the result we obtained in

the flat background. For the spinor fields, the RPP is
measured via the function γ1=2ðω;α; NÞ, and, in general, it
is less than 1 and becomes more so with increasing α
indicating a decrease in RPP as the non-Abelian magnetic
field becomes stronger. This is countered by the restoring
effect of the zero modes, whose degeneracy grows with
increasing Dirac monopole charge N and drives the
γ1=2ðω; α; NÞ back to 1 and the pair-production rates to
those found in the flat background. Nevertheless, the
overall effect is still larger for α ≠ 0 compared to α ¼ 0,
since the lowest-lying energies that follow after zero modes
in the spectrum remain below their value at α ¼ 0 and the
corresponding states are, therefore, more eligible to get
filled by the produced pairs. Increasing N or ω counteracts,
as in either case the dominance of the zero modes is
elevated and the pair-production rates converge to their
vales at α ¼ 0.
Finally, the case of a vanishing Abelian magnetic field

(that is, the presence of a pure uniform SUð2Þ magnetic
field) is also studied for the scalar and the spinor fields in
both the flat and the curved backgrounds, and the results are
compared and contrasted with those summarized above.

II. PAIR-PRODUCTION RATES FOR SCALAR
FIELDS FIELDS ON R3;1

In this section, we calculate the pair-production rate for
particles with spin 0 in the Minkowski spaceR3;1, under the
influence of uniform Abelian and non-Abelian fields. In
addition to a uniform electric field E⃗ ¼ Ex̂3 in the x3
direction as usual, we consider an additional SUð2Þ ×Uð1Þ
gauge field generating a uniform magnetic field as we shall
introduce shortly. In order to obtain the pair-production
rates, our strategy is to Wick rotate R3;1 to R4 ¼ R2 ×R2

and evaluate the Euclidean effective action due to appro-
priately constructed gauged Laplacian and Dirac operators
for spin-0 and spin-1=2 particles, respectively. On the first
R2 copy, spanned by ðx1; x2Þ coordinates, we introduce the
SUð2Þ × Uð1Þ gauge field of the form

A⃗ð1Þ ¼
B1

2
ð−x2x̂1 þ x1x̂2Þ12 þ βð−σ2x̂1 þ σ1x̂2Þ; ð2:1Þ

where σ⃗ ≔ ðσ1; σ2; σ3Þ are the usual Pauli matrices. Clearly,

A⃗ is composed of a Uð1Þ gauge field A⃗Uð1Þ ≔ B1

2
ð−x2x̂1 þ

x1x̂2Þ and a purely SUð2Þ gauge field ASUð2Þ
i ≔ −βϵijσj,

where i, j ¼ 1, 2. In what follows, we will call this SUð2Þ
field (as well as its analog on S2 to be introduced in Sec. III)
as the “isospin” gauge field to distinguish it from the usual
spin, which will naturally be present in the ensuing

discussion for spin-1=2 particles. We can easily see that
A⃗ generates a uniform magnetic field

F12 ¼ B112 þ 2β2σ3: ð2:2Þ

On the second R2 copy spanned by ðx3; x4Þ, we consider
another Uð1Þ gauge field, say, A⃗ð2Þ, generating a uniform

Abelian magnetic field F34 ≔ B2. We can take A⃗ð2Þ in the
Landau or in the symmetric gauge, but this is going to be
immaterial for our purposes. The magnetic field B2 will be
Wick rotated to the uniform electric field (F34 → iF03, i.e.,
B2 → iE) at an appropriate stage in the calculation (to be
given below), and the sole purpose to introduce it at this
stage is to take advantage of the well-known solution of the
Landau problem to write down the spectrum of the gauged
Laplacian and Dirac operators to facilitate the evaluation of
the Euclidean effective actions. Thus, the total gauge field on
R4 is Aμ ≔ ðA⃗ð1Þ; A⃗ð2ÞÞ, and Wick rotating R4 to R3;1, i.e.,
ðx1; x2; x3; x4Þ → ðx1; x2; x3;−ix0Þ, yields the electric and
the magnetic fields E⃗ ¼ E12x̂3 and B⃗ ¼ F12x̂3, respectively
(with the Uð1Þ accounting for the electromagnetic field).

A. Spectrum of the gauged Laplacian

Introducing the covariant derivative Dμ ≔ ∂μ − iAμ on
R4 ðμ∶1; 2; 3; 4Þ, gauged Laplace operator on R4 may be
written in a self-evident notation as

−D2 ¼ −ðD2
ð1Þ þD2

ð2ÞÞ
¼ −ð∂⃗ − iA⃗ð1ÞÞ2 − ð∂⃗ − iA⃗ð2ÞÞ2: ð2:3Þ

−D2
ð1Þ can be expressed in the form

−D2
ð1Þ ¼ 2B1

�
a†aþ

ffiffiffi
2

p
β0ða†σþþaσ−Þþ

1

2
ð1þ2β02Þ12

�
;

ð2:4Þ

where a and a† are the annihilation and creation operators,
respectively, defined in the same manner as in the Landau
problem (see Appendix A) and σ� ¼ σ1 � iσ2 are the
isospin ladder operators. Here, we have also introduced the
notation β0 ¼ β=

ffiffiffiffiffiffi
B1

p
as the dimensionless non-Abelian

magnetic field strength by scaling β with respect to the
square root of the Abelian magnetic field. This operator is
essentially very similar to the Hamiltonian of the Jaynes-
Cummings model [37] as is already discussed in [28], and it
can easily be diagonalized. Its spectrum is

Λ�
n1 ¼ 2B1

�
n1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β02n1 þ 1=4

q
þ β02

�
; ð2:5Þ

where n1 ¼ 0; 1; 2… for the upper and n1 ¼ 1; 2;… for the
lower signs, respectively. Details of a straightforward
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calculation leading to (2.5) is provided in Appendix A for
convenience. Note, in particular, that the lowest-lying state
is given by Λþ

0 ¼ 2B1ðβ02 þ 1=2Þ.
On the other hand, the spectrum of −D2

ð2Þ is nothing but
the solution of the Landau problem, and the eigenvalues are
B2ð2n2 þ 1Þ, where n2 ¼ 0; 1; 2;…. Putting these facts
together, we have

Specð−D2 þm2Þ ¼ Λ�
n1 þ B2ð2n2 þ 1Þ þm2; ð2:6Þ

with the density of states given as B1

2π ×
B2

2π, since the
presence of the non-Abelian magnetic field does not alter
the density of states corresponding to the spectrum Λ�

n1 of
−D2

ð1Þ as can readily be inferred from the calculations
provided in Appendix A.

B. Pair-production rates

We start with the computation of the Euclidean effective
action ΓE ≡ Tr logð−D2 þm2Þ, which we will Wick rotate
to Lorentzian signature at an appropriate stage. Following
the approach in [16], we have

ΓE ¼ −Tr lim
ϵ→0

Z
∞

ϵ

ds
s
e−sð−D2þm2Þ

¼ −lim
ϵ→0

Z
∞

0

d4x
Z

∞

ϵ

ds
s
hxje−sð−D2þm2Þjxi: ð2:7Þ

Expanding the position kets jxi on R4 with respect to the
eigenkets jn1; n2;αi (with the auxiliary index α labeling the
degeneracy) of the gauged Laplacian, we may write

ΓE ¼ −lim
ϵ→0

Z
∞

0

d4x
Z

∞

ϵ

ds
s

X
n1;n2;α

hxje−sð−D2þm2Þjn1; n2; αihn1; n2; αjxi

¼ −lim
ϵ→0

Z
∞

0

d4x
Z

∞

ϵ

ds
s

X
n1;n2;α

hxjn1; n2; αiðe−sðΛ
þ
n1
þB2ð2n2þ1Þþm2Þ þ e−sðΛ

−
n1
þB2ð2n2þ1Þþm2ÞÞhn1; n2; αjxi

¼ −lim
ϵ→0

Z
∞

0

d4x
Z

∞

ϵ

ds
s

X
n1;n2;α

ψ�
n1;n2;αðxÞψn1;n2;αðxÞðe−sðΛ

þ
n1
þB2ð2n2þ1Þþm2Þ þ e−sðΛ

−
n1
þB2ð2n2þ1Þþm2ÞÞ; ð2:8Þ

where ψn1;n2;αðxÞ denote the eigenfunctions of the gauged
Laplacian in the position basis. Using the normalization of
ψn1;n2;αðxÞ and the density of states B1B2

ð2πÞ2, sum over these

degenerate states can be performed,8 and we may write

ΓE ¼ −lim
ϵ→0

Z
∞

0

d4x
Z

∞

ϵ

ds
s
B1B2

ð2πÞ2
X
n1;n2

�
e−sðΛ

þ
n1
þB2ð2n2þ1Þþm2Þ

þ e−sðΛ
−
n1
þB2ð2n2þ1Þþm2Þ

�
¼ −lim

ϵ→0

Z
∞

0

d4x
B1

8π2

Z
∞

ϵ

ds
s2

sB2

sinh sB2

X
n1

�
e−sðΛ

þ
n1
þm2Þ

þ e−sðΛ
−
n1
þm2Þ

�
: ð2:9Þ

In the second line in (2.9), we have performed the
summation over the index n2. This is the appropriate stage
to Wick rotate the Euclidean effective action via x4 → ix0
and B2 → −iE and identify ΓE with iSeff . The pair-
production rate is proportional to the real part of the latter,
which we denote as ReðiSeffÞ. We have

iSeff ¼
i

8π2
lim
ϵ→0

Z
∞

0

d4xB1

Z
∞

ϵ

ds
s2

sB2

sinhsB2

X
n1

�
e−sðΛ

þ
n1
þm2Þ

þ e−sðΛ
−
n1
þm2Þ

�
: ð2:10Þ

We can now perform the s integration in the same manner
as in [16]. The integral has singularities at s ¼ nπ=E,
n ¼ 1; 2; 3;…. For the pair-production rate, we need only
the real part of iSeff , and the contributions to this come from
the integrals around small semicircles at each singularity.
Therefore, taking our integration variables as s ¼ nπ=Eþ
z with jzj ≪ 1 and performing the integration over the
parameter z, we get

ReðiSeffÞ ¼
EB1

8π2

Z
d4x

X∞
n¼1

ð−1Þn
n

X
n1

�
e−ðnπ=EÞðΛ

þ
n1
þm2Þ

þ e−ðnπ=EÞðΛ
−
n1
þm2Þ

�
; ð2:11Þ

which, after performing the sum over n, can be cast into the
form

ReðiSeffÞ ¼
EB1

8π2

Z
d4x
X
n1

× ln
�
1þ e−ð2πB1=EÞðn1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β02n1þ1=4

p
þβ02þ1

2
m2Þ
�

þ ln
�
1þ e−ð2πB1=EÞðn1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β02n1þ1=4

p
þβ02þ1

2
m2Þ
�
:

ð2:12Þ

Introducing the dimensionless parameter y ≔ B1=E and
taking the limit m2 → 0, we are able to write8R d4xPα ψ

�
n1;n2;αðxÞψn1;n2;αðxÞ ¼

P
α 1 ¼ R d4x B1B2

ð2πÞ2.
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ReðiSeffÞ ¼ −
Z

d4x
E2

96π
f0ðy; β0Þ; ð2:13Þ

where

f0ðy; β0Þ ¼
12y
π

X∞
n¼1

ð−1Þnþ1

n

X
n1

�
e−πny

Λþn1
B1 þ e−πny

Λ−n1
B1

�

¼ 12y
π

 X∞
n1¼0

lnð1þ e−2πyðn1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β02n1þ1=4

p
þβ02ÞÞ þ

X∞
n1¼1

lnð1þ e−2πyðn1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β02n1þ1=4

p
þβ02ÞÞ

!
: ð2:14Þ

We see that f0ðy; β0Þ → 1 as y → 0, i.e., for B1 → 0 and
β → 0 with β0 ¼ βffiffiffiffi

B1

p held fixed.9 Then, (2.13) yields

nothing but twice the usual Schwinger result in this limit,
the overall factor of 2 being due to equal contributions from
isospin up and down degrees of freedom in this limit.
In order to assess the pair-production rates in this setting,

we may inspect the behavior of the function f0ðy; β0Þ as we
vary y at various values of β0. In Fig. 1(a), the profile of this

function is plotted for β0 ¼ 0; 1=4; 1=2;
ffiffi
3
8

q
; 7=8; 1; 3=2.

We immediately observe that f0ðy; β0Þ decreases with
increasing y. This means that with the increasing
Abelian field strength, B1 (y ¼ B1=E) leads to a decrease
in the pair-production rates. This feature of the function
f0ðy; β0Þ is expected and in accord with the case studied
in [16] with a purely Abelian magnetic field. In fact, we
observe that the eigenvalues Λþ

n1ðβ0Þ are always larger than
Λþ
n1ðβ0 ¼ 0Þ ¼ 2B1ðn1 þ 1

2
Þ (i.e., those obtained for the

purely Abelian magnetic field) and become larger with
increasing β0, too. We conclude that these quantum states
become increasingly harder to be filled by particle-anti-
particle pairs as β0 increases, and we observe a significant
decrease in the value of the function f0ðy; β0Þ for increasing
β0 values. However, for a given level n1, Λ−

n1ðβ0Þ starts with
the value Λ−

n1ðβ0 ¼ 0Þ ¼ 2B1ðn1 − 1
2
Þ at β0 ¼ 0, decreases

to the minimum 2B1
n2
1
−1=4
2n1

at β0c1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
n2
1
−1=4
2n1

q
, and mono-

tonically increases starting from this point and attains
2B1ðn1 − 1

2
Þ value again at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 − 1

p
. Thus, compared

tothe β0 ¼ 0 configuration, between 0 < β0 ≤ β0c1 , with

increasing β0, states with Λ−
n1ðβ0Þ are energetically more

favorable to be filled by produced pairs, while between
β0c1 ≤ β0 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 − 1

p
, they still are more favorable to be

filled but become less so with increasing β0. These features
are reflected in the profile f0ðy; β0Þ as readily observed
from Fig. 1(a); at around10 y ≈ 1, we see that f0ðy; β0Þ takes
larger values with increasing β0 ≤ β0c1 , with β0c1 ≈

ffiffiffiffiffiffiffiffi
3=8

p
well approximated by that associated to the lowest energy
level Λ−

1 , while for β0c1 ≤ β0 ≲ β0c2, we have f0ðy; β0Þ
decreasing with increasing β0 but exceeding its value at
β0 ¼ 0 at sufficiently large values of y. Our numerical
estimates give f0ðy ¼ 1.5; β0 ¼ 0.86Þ ≈ 0.1046, f0ðy¼
1.5; β0 ¼0Þ≈0.1024, and f0ðy¼1.5;β0 ¼0.87Þ≈0.1006,
placing β0c2 ≈ 0.86 at y ¼ 1.5 with β0c2 ≲ 1 for y → ∞.
For β0 > 1, we have Λ−

1 ðβ0Þ > Λ−
1 ðβ0 ¼ 0Þ, and any further

increase in the value of β0 results in a sharp decrease of the
function f0ðy; β0Þ and, hence, the pair-production rates.

We may also define the function F0ðy; β0Þ ≔ f0ðy;β0Þ
f0ðy;0Þ ,

which is not only a good measure for the relative pair-
production rates, but also allows us to further elaborate on
the significance of the values β0c1 ¼

ffiffiffiffiffiffiffiffi
3=8

p
and β0 ¼ 1.

Inspecting the profiles of F0ðy; β0Þ in Fig. 1(b), we see that
F0ðy; β0Þ exceeds the value 1 at y ≈ 1 and becomes larger
with increasing β0 within the interval 0 < β0 ≲ ffiffiffiffiffiffiffiffi

3=8
p

.

For
ffiffiffiffiffiffiffiffi
3=8

p
≤ β0 < 1, F0ðy; β0Þ is above the value 1 only

for sufficiently large y and increases with β0, approaching
the value 1, while for β0 > 1 it quickly decreases and
converges to zero. In addition to these features, which are in
complete accord with conclusions we have reached by
inspecting the profile of f0ðy; β0Þ, we further see that, at
β0 ¼ 1, F0ðy; β0Þ approaches to the value 1=2 at large y,
with F0ðy ¼ 2; β0 ¼ 1Þ ≈ 0.5020. This means that, at the
critical value β0 ¼ 1, the pair-production rate quickly
converges to half of what was found for the purely
Abelian case (β0 ¼ 0) in [16]. This profile of F0ðy; β0Þ at

9This limit is essentially independent of the value of β0 and
easily evaluated at β0 ¼ 0 and, therefore, holds the same at any
value of β0 by continuity. With β0 ¼ 0, starting from the first line
in (2.14) and performing the sum over the index n1 first, we have

lim
y→0

f0ðy; β0Þ ¼ lim
y→0

12

π

X∞
n¼1

ð−1Þnþ1

n
y

sinh nπy

¼ 12

π2
X∞
n¼1

ð−1Þnþ1

n2
¼ 12

π2
ηð2Þ ¼ 1;

using the value of the Dirichlet eta function ηð2Þ ¼ π2

12
.

10At sufficiently large values of y, the contribution of both the
sums in (2.14) become sufficiently small, allowing us to
distinguish the effects of the energies Λ−

n1ðβ0Þ of the available
quantum states on the pair-production rates.
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β0 ¼ 1 can be predicted by comparing the energies and
degeneracy of the lowest-lying quantum states. Indeed, we
have11 Λþ

0 ðβ0 ¼0Þ¼Λ−
1 ðβ0 ¼0Þ¼B1 and Λ−

1 ðβ0 ¼1Þ¼B1;
thus, we have double the number of states at this energy in
the purely Abelian case leading to F0ðy; β0Þ converging to
the value of 1

2
, which is corroborated from its profile given

in Fig. 1(b).
The spectrum of−D2

ð1Þ with purely non-Abelian magnetic
field β is obtained from Λ�

n1 by taking the limit B1 → 0,
n1 → ∞ such that 2B1n1 → k2 and Λ�

n →¼ k2þ
2β2 � 2βk, where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and kx, ky are the eigen-

values of p⃗ in the transverse directions. This spectrum is also
directly worked out from first principles in Appendix A for
completeness. Computation of the Euclidean effective action
ΓE proceeds straightforwardly, and the short cut is that,
in (2.14), B1

P
n1 gets replaced with the integral

R
kdk, and

this yields

ReðiSeffÞ ¼ −
Z

d4x
E2

96π
f0ðπ=E; βÞ; ð2:15Þ

where

f0ðz; βÞ ¼
12

π2
z
Z

kdk
�
lnð1þ e−z½ðkþβÞ2þβ2þm2�Þ

þ lnð1þ e−z½ðk−βÞ2þβ2þm2�Þ
�
: ð2:16Þ

This is a decreasing function of β, as observed from
Fig. 1(c), leading to a decrease in the pair-production rates
with increasing β. In the limit β → 0, we obtain twice the
Schwinger result, since the dimension of the eigenstate space
is trivially doubled due to the isospin degree of freedom.

III. PAIR-PRODUCTION RATES FOR SPINOR
FIELDS FIELDS ON R3;1

We now proceed to consider the pair production for spin-1
2

particles on R3;1 under the influence of the same additional
SUð2Þ × Uð1Þ magnetic field. For this purpose, we again
consider the Wick-rotated configuration with the magnetic
fields F12 andF34 onR2 ×R2 ≡ R4. To our knowledge, the
spectrum of the Dirac operator in such a background gauge
field has not been considered in the literature before.
Therefore, we proceed to handle this task first. We may
note that the solution of this problem is interesting in its own
right, as it leads to zero modes in a manner similar to the
spectrum of the Dirac operator exposed to a purely Abelian
uniform magnetic field.

A. Spectrum of the gauged Dirac operator

We may launch the discussion by writing out the gauged
Dirac operator on the first copy of R2. This is given as

FIG. 1. Profiles of f0ðy; β0Þ (a), F0ðy; β0Þ (b), and f0ðz; βÞ (c).

11Here, it is sufficient to focus on the lowest-lying energy
eigenvalues, since they are the ones which are most easily filled
by the produced pairs.
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=Dð1Þ ¼ γiDi ¼ γið∂i − iAi
ð1ÞÞ; ð3:1Þ

where γi are the 2 × 2 span the Clifford algebra on R2. We
take them as γ1 ¼ τ1 and γ2 ¼ τ2, where τ1 and τ2 are the
2 × 2 Pauli matrices. The gauge field Ai

ð1Þ is as given
already in (2.1). After some straightforward algebra which
is relegated to Appendix B, we may write the operator
−=D2

ð1Þ as

−=D2
ð1Þ ¼ 2B1

0
BBBB@

a†a
ffiffiffi
2

p
β0a† 0 0ffiffiffi

2
p

β0a a†aþ 2β02 0 0

0 0 aa†þ 2β02
ffiffiffi
2

p
β0a†

0 0
ffiffiffi
2

p
β0a aa†

1
CCCCA;

ð3:2Þ

where a and a† are the usual annihilation and creation
operators, respectively (see Appendix A). Clearly, −=D2

ð1Þ is
acting on the Hilbert space H ¼ C4 ⊗ F , where the Fock
space F is spanned by the eigenstates of the number
operator N ¼ a†a as usual. Diagonalizing − =D2

ð1Þ in an
appropriate subspace Hn ⊂ H leads to the spectrum (see
Appendix B)

λ�n1 ¼ B1ð1þ 2n1 þ 2β02 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β02ð1þ 2n1 þ β02Þ

q
Þ;
ð3:3Þ

where n1 ¼ 0; 1;…. We may remark that the� signs in the
spectrum λ�n1 are correlated neither with the spin nor with
the isospin of the system. Eigenstates of −=D2

ð1Þ are
simultaneous eigenstates of the spin but not those of the
isopin, since −=D2

ð1Þ commutes with τ3 (for that matter, with

all τi) but not with σ3. Thus, each eigenvalue occurs twice
(once for spin up and once for spin down), and the density
of states is 2 × B1

2π. Details leading to these facts are
provided in Appendix B. In particular, we may note that
the n1 ¼ 0 level with the lower sign gives the zero modes
and λþn1 (λ−n1) is a monotonically increasing (decreasing)
function of β0. Thus, all the eigenvalues λ−n1 tend to zero
as β0 → ∞.
We may note that the spectrum of −=D2

ð2Þ on the second
R2 copy is that of the Dirac-Landau problem and given by
2B2ðn2 þ 1Þ and 2B2n2, for n2 ¼ 0; 1;…, for spin up and
down, respectively. Thus, the spectrum of −=D2 þm2 ¼
−ð=D2

ð1Þ þ =D2
ð2ÞÞ þm2 on R2 ×R2 ¼ R4 is easily written as

Specð−=D2 þm2Þ ¼
(
λ�n1 þ 2B2ðn2 þ 1Þ þm2;

λ�n1 þ 2B2n2 þm2;
ð3:4Þ

where n1; n2 ¼ 0; 1;… and the density of states is 2 ×
B1B2=ð2πÞ2 in each branch.

B. Pair-production rates

In the Euclidean signature, the one-loop effective action
is given as

ΓE ¼ −Tr lnð=DþmÞ

¼ −
1

2
Tr lnð=D† þmÞð=DþmÞ

¼ −
1

2
Tr lnð−=D2 þm2Þ: ð3:5Þ

Separating out the zero mode contribution explicitly and
performing the summation over the index n2, we get

ΓE ¼ B1B2

4π2

Z
d4x lim

ϵ→0

ds
s
coth sB2

"X∞
n1¼0

e−s
�
1þ2n1þ2β02þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2n1þβ02Þ

p
þm2
�
þ
X∞
n1¼1

e−s
�
1þ2n1þ2β02−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2n1þβ02Þ

p
þm2
�
þe−sm

2

#
:

ð3:6Þ

Equation (3.6) includes an overall of factor of 2, since each of the eigenvalues λ�n1 occurs with multiplicity 2. Performing the
integral over s, evaluating the sum due to the ensuing residue integration, and Wick rotating the ΓE to Minkowski time
allows us to write ReðiSeffÞ as

ReðiSeffÞ ¼ −
Z

d4x
E2

2π2
y

	
lnð1 − e−πm

2=EÞ þ
X
n1¼0

ln
�
1 − e−πm

2=E−yπð1þ2n1þ2β02þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2n1þβ02Þ

p
Þ�

þ
X
n1¼1

ln
�
1 − e−πm

2=E−yπð1þ2n1þ2β02−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2n1þβ02Þ

p
Þ�
; ð3:7Þ

where, we have, once again, used y≡ B1=E. We may write our final result as
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ReðiSeffÞ ¼ −
Z

d4x
E2

24π
f1=2ðy; β0Þ; ð3:8Þ

where

f1=2ðy; β0Þ ¼ −
6y
π

	
lnð1 − e−πm

2=EÞ þ
X
n1¼0

ln
�
1 − e−πm

2=E−yπð1þ2n1þ2β02þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2n1þβ02Þ

p
Þ�

þ
X
n1¼1

ln
�
1 − e−πm

2=E−yπð1þ2n1þ2β02−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2n1þβ02Þ

p
Þ�
: ð3:9Þ

We may note that the first term in this expression is the
contribution of the zero modes, which will make f1=2ðy; β0Þ
diverge to infinity unless it is regulated. The mass term is
kept as an infrared cutoff to avoid this divergent behavior.
In the absence of the non-Abelian field, i.e., β0 ¼ 0, we
already know that [16] f1=2ðy; β0Þ → 1 as y → 0 and it
increases with y. In the present case, since the degeneracy
of the zero modes still increases with increasing values of
B1 (hence, increasing y), we expect an increase in the pair-
production rates as y becomes larger, as there is no energy
cost for the produced pairs to fill these zero energy states.
The function f1=2ðy; β0Þ is rather sensitive to the choice of
the infrared cutoff, and its profile is given Fig. 2(a), where
we have picked m2π

E ¼ 2 × 10−2 and evaluated the sums up
to n1 ¼ 125. Figure 2(a) clearly depicts these expectations,
and we further observe that the function f1=2ðy; β0Þ and,

hence, the pair production goes up as we raise the value of
β0 at any fixed value of y. To better understand this feature,
we note from (3.9) that, at any given value of y, the
argument of the first sum tends to ≈ ln 1 → 0, since λþn1 in
the exponential is monotonically increasing with β0, while
the argument of the second sum tends to lnð1 − e−πm

2=EÞ,
since λ−n1 in the exponential is monotonically decreasing
with β0 starting with a maximum value of 2B1n1 at β0 ¼ 0.
Thus, as β0 becomes larger, all the terms in the second sum
tend to contribute almost the same as with that of the zero
modes, resulting in a sharp increase in the pair-production
rates. Let us note in passing that the hierarchy in the plots
with respect to β0 in Fig. 2(a) is preserved at other
physically sensible values of the cutoff m2π

E . A good
measure for the relative production rate is provided by

the function F1=2ðy; β0Þ ¼ f1=2ðy;β0Þ
f1=2ðy;0Þ , which is essentially

FIG. 2. Profiles of f1=2ðy; β0Þ (a), F1=2ðy; β0Þ (b), and f1=2ðz; βÞ (c).
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independent of the infrared cutoff,12 and it is plotted in
Fig. 2(b) at several values of β0. We immediately see the
quickly formed peaks in the profile of this function at low
values of y and, hence, the sharp increase in the pair-
production rates compared to the purely Abelian case with
β0 ¼ 0 as we keep on increasing β0. As y increases further,
only the zero mode term lnð1 − e−πm

2=EÞ contributes
significantly to both the numerator and denominator of
F1=2ðy; β0Þ, and the pair-production rates tend back to its
value at β0 ¼ 0.
The spectrum of −=D2

ð1Þ with purely non-Abelian mag-
netic field β is obtained from λ�n1 by taking the limit
B1 → 0, n1 → ∞ such that 2B1n1 → k2. This gives

λ�n → k2 þ 2β2 � 2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ β2

p
, where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
as

already defined in the previous section. For completeness,
we provide a complete derivation of this spectrum from first
principles in Appendix B. Absorbing the zero mode term
in (3.7) back into the last sum in that expression and
subsequently replacing B1

P
n1 with the integral

R
kdk, we

obtain

ReðiSeffÞ ¼ −
Z

d4x
E2

24π
f1=2ðπ=E; βÞ; ð3:10Þ

where

f1=2ðz; βÞ ¼ −
6

π2
z
Z

kdk
�
lnð1 − e−z½ðk2þ2β2þ2β

ffiffiffiffiffiffiffiffiffi
k2þβ2

p
þm2�Þ

þ lnð1 − e−z½k2þ2β2−2β
ffiffiffiffiffiffiffiffiffi
k2þβ2

p
þm2�Þ

�
: ð3:11Þ

This is an increasing function of β, leading to a significant
increase in the pair-production rates as β becomes larger, as
readily observed from the plots given in Fig. 2(c). In the
β → 0 limit, we recover twice the Schwinger result, due to
equal contributions coming from the isospin up and isospin
down degrees of freedom in this limit.

IV. PAIR-PRODUCTION RATES FOR SCALAR
FIELDS FIELDS ON S2 × R1;1

In this section, we compute the pair-production rates for
spin-0 and spin-1

2
particles subject to a radial SUð2Þ ×Uð1Þ

magnetic field on the product manifold S2 × R1;1. To
proceed, we follow a similar line of development as in
the previous section and first evaluate the one-loop effec-
tive action on S2 ×R2 with a radial SUð2Þ ×Uð1Þ mag-
netic field on S2 and the usual uniform magnetic field on
R2. The latter will then be Wick rotated to the uniform
electric field as before.

A. Spectrum of the gauged Laplacian on S2 ×R2

To proceed, we need the spectrum of the gauged
Laplacian

D2 ¼ Λ⃗2

a2
; Λ⃗≡ r⃗ × ðp⃗ − A⃗Þ; ð4:1Þ

on S2, where

A⃗ ¼ A⃗Abelian þ α
r⃗ × σ⃗

a2
; ð4:2Þ

a being the radius of S2. Here, A⃗Abelian is the gauge potential
for the Dirac monopole. The associated field strength is

B ¼ N
2a2

þ
�
2

�
α −

1

2

�
2

−
1

2

�
σ⃗ · r̂
a2

; ð4:3Þ

where N ∈Z stands for the Dirac monopole charge.
D2 can be brought into the form

D2 ¼ 1

a2

�
J
!2 þ 1

4
−
N2

4
þ 2

�
α −

1

2

�
2

−
1

2
þ 2

�
α −

1

2

�

×

�
J
!

· σ!−
1

2
þ N

2
σ! · r̂

�
þ N

2
σ! · r̂

�
; ð4:4Þ

where J
!

is the total angular momentum, which is given as

J
!¼ r!× ðp!− A

!
AbelianÞ −

N
2
r̂þ σ!

2
;

¼ Λ!Abelian −
N
2
r̂þ σ!

2
: ð4:5Þ

J
!

involves the contribution of the orbital angular momen-
tum of the charged particle and that of the electromagnetic
field generated by the particle-Dirac monopole pair as well
as the contribution of the SUð2Þ isospin. The spectrum of
D2 is already obtained in [28] and given by

Λ�
n1ðαÞ ¼

1

a2

�
n1ðN þ n1Þ þ 2

�
α −

1

2

�
2

−
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
α −

1

2

�
2

ðn1 þ NÞn1 þ
N2

4

s �
; ð4:6Þ

where we have n1 ¼ 0; 1; 2;… forΛþ
n1 and n1 ¼ 1; 2;… for

Λ−
n1 and N ¼ 1; 2;…. For convenience, we reproduce the

calculation leading to this spectrum in Appendix C and also
provide the group theoretical details that lead us to the
ð2n1 þ NÞ-fold degeneracy at each level and branch. Let us
also note that Λ�

n1ðαÞ ¼ Λ�
n1ð1 − αÞ, which is a conse-

quence of the fact that B in (4.3) is symmetric under the12We have verified this numerically using Mathematica.
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interchange α ↔ 1 − α. The spectrum of D2
S2 þD2

R2 þm2 on S2 ×R2 is given as

SpecðD2
S2 þD2

R2 þm2Þ ¼ Λ�
n1ðαÞ þ B2ð2n2 þ 1Þ þm2; ð4:7Þ

where n1 is as given above and n2 ¼ 0; 1; 2;….

B. Pair-production rates

The Euclidean one-loop effective action takes the form

ΓE ¼ −
1

16π2a2

Z
d2x

Z
dΩ2

Z
ds
s

B2

sinh sB2

"X∞
n1¼0

ð2n1 þ NÞe−
s
a2

h
n1ðNþn1Þþ2ðα−1

2
Þ2−1

2
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ðn1þNÞn1þN2

4

p i

þ
X∞
n1¼1

ð2n1 þ NÞe−
s
a2

h
n1ðNþn1Þþ2ðα−1

2
Þ2−1

2
−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ðn1þNÞn1þN2

4

p i#
: ð4:8Þ

Evaluating the integral over s and performing the Wick rotation R2 → R1;1, B2 → −iE, we find

ReðiSeffÞ ¼ −
Z

d2x
Z

dΩ2

E2

16π3
β0ðω; α; NÞ; ð4:9Þ

where β0ðω; α; NÞ is given as

β0ðω; α; NÞ ¼ ω

"X∞
n1¼0

ð2n1 þ NÞ ln
�
1þ e−ω½n1ðNþn1Þþ2ðα−1

2
Þ2−1

2
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2n1ðn1þNÞþN2

4

p
�
�

þ
X∞
n1¼1

ð2n1 þ NÞ ln
�
1þ e−ω½n1ðNþn1Þþ2ðα−1

2
Þ2−1

2
−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2n1ðn1þNÞþN2

4

p
�
�#

: ð4:10Þ

In the above, we have defined ω ≔ π=Ea2. Let us note
immediately that β0ðω; α; NÞ ¼ β0ðω; 1 − α; NÞ, which is
clearly a consequence of the same symmetry that we have
already noted for the spectrum in (4.6).
In order to compare the pair-production rates on this

geometry to that on R3;1, we first evaluate the limit
S2 → R2. To compute this, we take a → ∞ and also
N; α → ∞, while keeping both N

2a2 and
α2

a2 constant. Since
the definition of ω already contains the term 1=a2, we can
keep ωN (or similar combinations) as is. We find

βflat0 ðω; α; NÞ ¼ ωN

"X∞
n1¼0

ln
�
1þ e−ω½n1Nþ2α2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2Nn1þN2

4

p
�
�

þ
X∞
n1¼1

ln
�
1þ e−ω½n1Nþ2α2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2Nn1þN2

4

p
�
�#

:

ð4:11Þ

In what follows, for notational ease, we write Λ�flat
n1 ≔

1
a2 ðn1N þ 2α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2Nn1 þ N2=4

p
Þ. We observe that the

latter identifies with (2.5) and βflat0 ðωÞ → π2

6
f0ðy; β0Þ once

we set B1 ¼ N
2a2 and β2 ¼ α2

a2 with β02 ¼ β2

B1
.

The ratio γ0ðω; α; NÞ≡ β0ðω;α;NÞ
βflat
0
ðω;α;NÞ is useful to compare the

pair-production rates on S2 ×R1;1 to that onR3;1.13 We first
inspect the profile of γ0ðω; α; NÞ from Figs. 3(a)–3(c) as we
vary ω at α ¼ 1=2, 1, 2 at several N values. To elaborate on
the physical meaning of the profiles of γ0ðω; α; NÞ and,
hence, the relative pair-production rates, we essentially need
to consider the hierarchy of only the lowest-lying energy
levels for the spherical and flat geometries, which are Λþ

0 ,
Λ−
1 and Λþflat

0 , Λ−flat
1 , respectively. In addition, we observe

that the ratio of degeneracies of the curved to flat case goes
as Nþ2n1

N ¼ 1þ 2n1
N , which may be understood as being due

to the contribution of the curvature to the density of states,

13Let us note that γ0ðω; α; NÞ ≠ γ0ðω; 1 − α; NÞ, since the
denominator of γ0ðω; α; NÞ is not symmetric under α ↔ 1 − α.
In particular, we may examine the relative pair-production
rates for α < 0, using only α > 1 by forming the ratio
γ̃0ðω; α; NÞ ≔ β0ðω;1−α;NÞ

βflat
0

ðω;α;NÞ .
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which is B1

2π þ 2n1
4πa2 as opposed to only

B1

2π for the flat case [16],
indicating improved availability of quantum states at any
energy level except at n1 ¼ 0. Under the circumstances, that
will be described shortly, the contribution of the second term
in β0ðω; α; NÞ becomes important, γ0ðω; α; NÞ includes the

factor 1þ 2
N, whose enhancing effect tends to decrease

with increasing N. These features completely govern the
behavior of γ0ðω; α; NÞ, with γ0ðω; α; NÞ > 1 indicating
relatively higher and γ0ðω; α; NÞ < 1 lower pair-production
amplitudes.

FIG. 4. Λþ
0 , Λ−

1 , Λ
þflat
0 , and Λ−flat

1 as a function of α, N ¼ 1 (a), N ¼ 4 (b).

FIG. 3. RPP γ0ðω; α; NÞ as a function of ω.
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We note that Λþ
0 < Λþflat

0 (in fact, Λþ
n1 < Λþflat

n1 for all
n1 ¼ 0; 1; 2;…) for all values of α, and Λþ

0 and Λ−
1 intersect

at α ¼ 0 and α ¼ 1 withΛþ
0 < Λ−

1 for 0 < α < 1 andΛþ
0 >

Λ−
1 for α > 0. Furthermore, we haveΛþ

0 intersectingΛ−flat
1 at

αð1Þc ¼ 1
2

N
N−1 for N ≥ 2, with Λþ

0 < Λ−flat
1 for α < αð1Þc and

Λþ
0 > Λ−flat

1 for α > αð1Þc , while for N ¼ 1, αð1Þc ¼ 0, since
Λþ
0 ¼ 1

2
¼ Λ−flat

1 at α ¼ 0 and Λþ
0 remains always less than

Λ−flat
1 for α > 0. Finally, Λ−

1 andΛ−flat
1 intersect at α ¼ 0 and

at α ¼ αð2Þc > 1, with Λ−
1 > Λ−flat

1 for α < αð2Þc and Λ−
1 <

Λ−flat
1 for α > αð2Þc , and where αð2Þc is determined by the

unique solution of 1
N ¼ 1

16
1

ðα−1
2
Þ2 þ 1

8
1

ðα−1
2
Þα for α ≥ 1 at a given

value of N ¼ 2; 3…, except at N ¼ 1, for which

αð2Þc ¼ 0.836. At N ¼ 2, we have αð2Þc ¼ 1, and it gradually
increases from this value with increasing N. For instance,

αð2Þc ¼ 1.24 at N ¼ 4. We also note that, at N ¼ 2,

αð1Þc ¼ αð2Þc ¼ 1. Plots of these energy eigenvalues as a
function of α at N ¼ 1 and N ¼ 4 are provided in
Figs. 4(a) and 4(b) and clearly illustrate all the features
which we have explained above. Putting these facts together,

for 0 < α < αð1Þc , we have Λþ
0 as the lowest-energy eigen-

value, so these states are energetically favored to be filled by
the produced pairs in comparison with Λ−

1 as well as Λþflat
0

and Λ−flat
1 , and we, therefore, see from Figs. 3(a)–3(c) that

γ0ðω; α; NÞ increases above its starting value 1, and, hence,
we conclude that there is an increase in the relative pair-
production probabilities. As the Dirac monopole chargeN is
increased, Λþ

0 (as well as Λ−
1 , Λþflat

0 , and Λ−flat
1 ) also

increases, and, therefore, the rate of increase in
γ0ðω; α; NÞ slows down and it gradually tends to 1 as
N → ∞, indicating that the pair-production rates tend to
converge toward what is found for the flat case. For

αð1Þc < α < αð2Þc , we have Λ−flat
1 as the lowest among these

four energies, and we eventually see that γ0ðω; α; NÞ goes
below the value 1 (in fact, tends to zero at large ω) as
expected. Nevertheless, within a narrow range of values of
ω, approximately 0 < ω≲ 1, we also observe that
γ0ðω; α; NÞ ≥ 1. The latter can be explained being due
to approximately equal contributions from Λþ

0 and Λ−
1 to

the numerator beating those of Λþflat
0 and Λ−flat

1 to the

denominator.14 Finally, for α > αð2Þc , we have Λ−
1 become

the lowest among these four energies leading to

γ0ðω; α; NÞ > 1 and a significant increase in the relative

pair-production amplitudes. We may note that, at α ¼ αð2Þc ,
γ0ðω; α; NÞ converges to the ratio of the degeneracies
1þ 2

N, except at N ¼ 1. In the latter case, two facts—Λþ
0

always remaining less than Λ−;flat
1 and Λþ;flat

0 being almost
always the largest among the lowest-lying energies—are
sufficient to ensure that γ0ðω; α; N ¼ 1Þ > 1 with a pos-
itive rate of change with increasing α. We may illustrate all
of these conclusions by inspecting the profile of
γ0ðω; α; NÞ at a fixed value of N and several distinct
values of α. In Figs. 3(d) and 3(e), we give the plots of

γ0ðω; α; NÞ at N ¼ 1 and N ¼ 4, for which ðαð1Þc ; αð2Þc Þ ¼
ð0; 0.836Þ and ðαð1Þc ; αð2Þc Þ ¼ ð1; 1.24Þ, respectively. We see
that, for ω≳ 1, γ0ðω; α; N ¼ 4Þ is above the value 1 for
all 0 < α < 2

3
albeit decreasing with increasing α, and it

goes below 1 for 2
3
<α<1.24.15 At α ¼ 1.24, γ0ðω; α;

N ¼ 4Þ → 3
2
for large ω, while it increases for α > 1.24.

We may also compare the pair-production rates with and
without the non-Abelian magnetic fields. For this purpose,

we define R0ðω; α; NÞ≡ β0ðω;α;NÞ
β0ðω;0;NÞ. Plots of R0ðω; α; NÞ for

N ¼ 1 and N ¼ 4 are provided in Figs. 5(a)–5(d), respec-
tively. To explain the physics underneath, we first note
that, in units of 1

a2, Λ
�
n1ðα ¼ 0Þ ¼ Λ�

n1ðα ¼ 1Þ and Λþ
0 ðα ¼

0; 1Þ ¼ N
2
¼ Λ−

1 (α ¼ 0, 1). We also have Λþ
0 ≤ N

2
, Λ−

1 ≥ N
2

for 0 ≤ α ≤ 1. At α ¼ 1
2
, Λþ

0 has a global minimum (taking
the value N−1

2
) and Λ−

1 has a local maximum (taking the
value Nþ1

2
). For α > 1, we have Λþ

0 > N
2
and it increases

monotonically with α, whereas Λ−
1 continues to decrease

further, makes a minimum,16 and monotonically increases

from thereon attaining the value N
2

again at αð3Þc ≔
1
2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N þ 1
p Þ. All of these features can be visibly

recognized from Fig. 4(b). Keeping these facts in mind,
we first note that R0ðω; α; NÞ ¼ R0ðω; 1 − α; NÞ. Next,
we observe that the large ω behavior of R0ðω; γ; NÞ is
described by

R0ðω;α; NÞ⟶ω→∞

8>>><
>>>:

∞ α < αð3Þc ; α ≠ 0; 1;
1
2
Nþ2
Nþ1

α ¼ αð3Þc ;

0 α > αð3Þc ;

ð4:12Þ

14For instance, we may estimate γ0ðω ¼ 1=2; α; NÞ at N ¼ 4
and α ¼ 1. We have, in units of 1

a2, Λþ
0 ¼ Λ−

1 ¼ 2, while
Λþflat
0 ¼ 4, Λ−flat

1 ¼ 1.528 and

γ0ð1=2; α; NÞ ≈ 5

4

2 lnð1þ e−1Þ
lnð1þ e−2Þ þ lnð1þ e−0.85Þ ≈ 1.537;

while we have γ0ð2; ; α; NÞ ≈ 5
4

2 lnð1þe−4Þ
lnð1þe−8Þþlnð1þe−3.056Þ ≈ 0.979.

15Even within this interval there is a subhierarchy:
γ0ðω; α; N ¼ 4Þ decreasing with increasing α up to α ≈ 1 and
increasing for α > 1 while it remains below the value 1. This is
also understood as being due the counterplay among Λþ

0 , Λ−
1 , and

Λ−flat
1 all together.
16This is at α ¼ 1

2
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ2Þð3Nþ2Þ

Nþ1

q
, although it is not relevant

for our purposes.
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where the limiting value 1
2
Nþ2
Nþ1

at αð3Þc is readily seen to be
simply the ratio of the degeneracy N þ 2 of the energy

Λ−
1 ðαð3Þc Þ ¼ N

2
to the sum of the degeneraciesN andN þ 2 of

Λþ
0 ðα ¼ 0Þ ¼ N

2
¼ Λ−

1 ðα ¼ 0Þ, since the single former and
the two latter energy levels yield an equivalent as well as the
most dominant contribution lnð1þ e−ω

N
2Þ to the numerator

and denominator of R0ðω; α; NÞ, respectively. At large N,

we have R0ðω;αð3Þc ; NÞ → 1
2
þ 1

2N; thus, it converges to
F0ðy; β0 ¼ 1Þ ≈ 1

2
that we have found for the flat geometry

while αð3Þc

a
ffiffiffiffi
N
2a2

p ≈ 1 → β0c ¼ 1 as a;N → ∞ (cf. Fig. 1(b) and

the ensuing discussion). More generally, we have
R0ðω; α; NÞ → F0ðy; β0Þ as a; α; N → ∞ with B1 ¼ N

2a2,

β2 ¼ α2

a2, and β02 ¼ β2

B1
. We also see that, within 0 < α <

1, R0ðω; α; NÞ < 1 around ω ≈ 2
N and increases above 1

afterward. This is a consequence of the counterplay between
the contributions due toΛþ

0 ≤ N
2
andΛ−

1 ≥ N
2
on one side and

those of Λþ
0 ¼ N

2
¼ Λ−

1 at α ¼ 0 on the other. Since the
degeneracies areN forΛþ

0 andN þ 2 forΛ−
1 , the latter being

slightly larger tilts the R0ðω; α; NÞ value below 1. Let us also
that the rate of change of R0ðω; α; NÞ for both of these
regimes (i.e., R0ðω; α; NÞ < 1 and R0ðω;α; NÞ > 1) is
increasing for 0 < α < 1

2
and decreasing for 1

2
< α < 1 with

a maximum at α ¼ 1
2
, while the rate of change ofR0ðω; α; NÞ

with respect to ω becomes slower for R0ðω;α; NÞ < 1

and faster for R0ðω; α; NÞ > 1 with increasing N. For

1 < α < αð3Þc , although R0ðω; α; NÞ → ∞ as ω → ∞, the

interval over which R0ðω; α; NÞ < 1 stretches longer with
increasing α and eventually makes R0ðω; α; NÞ converge to
1
2
Nþ2
Nþ1

at α ¼ αð3Þc . Finally, for α > αð3Þc , R0ðω;α; NÞ rapidly
approaches to zero, since both Λþ

0 andΛ−
1 are larger than the

N
2
value they take at α ¼ 0.
For the case of vanishing Abelian monopole charge, the

spectrum of D2 on S2 is given in (C16) in Appendix C.
Using the latter, we find that

ReðiSeffÞ ¼ −
Z

d2x
Z

dΩ2

E2

8π3
β0ðω; αÞ; ð4:13Þ

where

β0ðω; αÞ ¼ ω
X∞
l¼1

l
�
ln
�
1þ e−ω½l2þ2ðα−1

2
Þ2−1

2
þ2ðα−1

2
Þl�
�

þ ln
�
1þ e−ω½l2þ2ðα−1

2
Þ2−1

2
−2ðα−1

2
Þl�
��

: ð4:14Þ

We may note that, for α ¼ 0, the sum over the second term
in (4.14) starts from l ¼ 0, since the spectrum of Λ−

l;N¼0

starts with l ¼ 0 as remarked in Appendix C. Nevertheless,
the expression for β0ðω; αÞ holds the same in this case, too,
due to the factor l in the summand which ensures that the
l ¼ 0 term of the sum yields a vanishing contribution. Let us
note that we also have β0ðω; αÞ ¼ β0ðω; 1 − αÞ, implying,
in particular, that β0ðω; 0Þ ¼ β0ðω; 1Þ. In the limit
a → ∞ keeping α

a fixed, we may write βflat0 ðω;αÞ ¼

FIG. 5. R0ðω; α; NÞ as a function of ω.
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ω
P∞

l¼1 lðlnð1þ e−ω½ðlþαÞ2þα2�Þ þ lnð1þ e−ω½ðl−αÞ2þα2�ÞÞ. In
this limit, setting l

a → k, α
a → β and replacing 1

a

P
l
l
a withR

kdk, we find that βflat0 ðωÞ → π2

12
f0ðπE ; β; m ¼ 0Þ, where the

last factor is given in (2.16). Below, we plot the profiles of
γ0ðω; αÞ≡ β0ðω;αÞ

βflat
0
ðω;αÞ and R0ðω; αÞ≡ β0ðω;αÞ

β0ðω;0Þ. From Figs. 6(a)

and 6(b), we see that the pair-production amplitude is larger
compared to the flat case at all values of α and approaches to
twice the latter as α → 1

2
from either below or above.

γ0ðω; αÞ decreases toward this value with increasing α
for 0 < α ≤ 1

2
and with decreasing α for α > 1

2
, as is readily

inferred from the hierarchy among the lowest-lying energy
states for the curved and the flat case. From Fig. 6(b), we see
that Λþ

l¼1ðαÞ is the lowest energy at α ¼ 0, and it mono-
tonically increases with α passing through the value 1

2

at α ¼ 1
2
while both Λ−

l¼1ðαÞ and Λ−flat
l¼1 ðαÞ decrease to

their minimum value of 1
2

at α ¼ 1
2
. Thus, we have

Λþ
l¼1ð12Þ ¼ Λ−

l¼1ð12Þ ¼ Λ−flat
l¼1 ð12Þ ¼ 1

2
, implying immediately

that the limit γ0ðω; α ¼ 1
2
Þ → 2 at large ω, since the

numerator is dominated by the same eigenvalue with twice
the multiplicity.

V. PAIR-PRODUCTION RATES FOR SPINOR
FIELDS FIELDS ON S2 × R1;1

A. Spectrum of the gauged Dirac operator

In this section, we will calculate the pair-production rate
for spinor fields on S2 ×R1;1 under the influence of the

same background fields introduced in the previous section.
For this purpose, we need the spectrum of the square of the
gauged Dirac operator =D2 ¼ 1

a2 ðτ⃗ · Λ⃗þ 1Þ2 on S2, where τi
are the usual Pauli matrices spanning the spin space. This is
an interesting problem in its own right, which we fully
solve in Appendix D. In terms of the total angular
momentum K⃗ ¼ L⃗þ σ⃗

2
þ τ⃗

2
, we have

a2=D2 ¼ K2 −
�
N2

4
− 2

�
α −

1

2

�
2
�
þ χ; ð5:1Þ

where χ ≔ 2ðα− 1
2
ÞðK⃗ · σ⃗ − 1

2
Þ þNασ⃗ · r̂− 2αðα− 1

2
Þðσ⃗ · r̂Þ

ðτ⃗ · r̂Þ and squares to the diagonal operator

χ2 ¼ 4

�
α −

1

2

�
2
�
K2 þ 1

4

�
−
��

α −
1

2

�
2

−
1

4

�

×

�
N2 − 4

�
α −

1

2

�
2
�
; ð5:2Þ

in the K⃗ basis. Relegating the details of the calculations to
Appendix D, the spectrum of =D2

S2 þ =D2
R2 on S2 ×R2 is

given in Table I, where

FIG. 6. γ0ðω; αÞ and R0ðω; αÞ at N ¼ 0, Lowest lying energy eigenvalues as function of α (c).
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λ�n1ðαÞ ¼
1

a2

0
@ξn1 þ

�
α−

1

2

�
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
α−

1

2

�
2

ξn1 þ
N2

4

s 1
A;

ð5:3Þ

ξn1 ¼ ðn1 þ 1
2
Þ2 þ Nðn1 þ 1

2
Þ þ ððα − 1

2
Þ2 − 1

4
Þ. In the table,

we have used the notation λn1þ1 ≔ λ−n1þ1, λn1−1 ≔ λþn1−1,
and we remark that, in the latter, for n1 ¼ 0 and N ≥ 2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα − 1

2
Þ2ξn1−1 þ N2=4

q
is replaced with N

2
− 2ðα − 1

2
Þ2 as

explained in Appendix D. We have n1 ¼ 0; 1; 2;…; n2 ¼
0; 1; 2;… except for λn1−1 at N ¼ 1 for which
n1 ¼ 1; 2;…. From detailed considerations given in
Appendix D, we see that, for N ≥ 2, the spectrum of
=D2

S2 has the zero modes λ−0 ¼ 0 and λ−1 ¼ 0 at n1 ¼ 0.
However, for N ¼ 1, we have from (D7c) that the set of
eigenvalues λn1−1 starts with n1 ¼ 1, meaning that this
branch does not include a zero mode, while the zero mode
from the branch λ−n1 is retained. Also note that the entire
spectrum is symmetric under α ↔ 1 − α.

B. Pair-production rates

We first evaluate the effective action on S2 × R2 and then
Wick rotate to S2 ×R1;1. We have

ΓE ¼ 1

2

Z
ds
s
Tr½e−sð=D2þm2Þ�: ð5:4Þ

Taking the integral over s andWick rotating by letting x4 →
ix0 and B2 → −iE, the real part of iSeff on S2 ×R1;1 can be
written (for N ≥ 2) as

ReðiSeffÞ ¼ −
1

16π2a2

Z
d2x

Z
dΩ2

X∞
n¼1

e−nπm
2=E E

n

�X
n1¼0

ð2n1 þ N − 1Þ
	
e−nπðξn1−1þðα−1

2
Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1−1þN2

4

p
þm2a2Þ=ðEa2Þ




þ
X
n1¼0

ð2n1 þ N þ 1Þ
	
e−nπðξn1þðα−1

2
Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1þN2

4

p
þm2a2Þ=ðEa2Þ




þ
X
n1¼0

ð2n1 þ N þ 1Þ
	
e−nπðξn1þðα−1

2
Þ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1þN2

4

p
þm2a2Þ=ðEa2Þ




þ
X
n1¼0

ð2n1 þ N þ 3Þ
	
e−nπðξn1þ1þðα−1

2
Þ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1þ1þN2

4

p
þm2a2Þ=ðEa2Þ


�
: ð5:5Þ

Using ω ¼ π
Ea2, we can write ReðiSeffÞ as

ReðiSeffÞ ¼ −
Z

d2x
Z

dΩ2

E2

8π3
β1=2ðω; α; NÞ; ð5:6Þ

where

β1=2ðω; α; NÞ ¼ −
ω

2

�
2N lnð1 − e−ωm

2a2Þ þ
X∞
n1¼1

ð2n1 þ N − 1Þ lnð1 − e−ωðξn1−1þðα−1
2
Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1−1þN2

4

p
Þþm2a2ÞÞ

þ
X∞
n1¼0

ð2n1 þ N þ 1Þ lnð1 − e−ωðξn1þðα−1
2
Þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1þN2

4

p
Þþm2a2ÞÞ

þ
X∞
n1¼1

ð2n1 þ N þ 1Þ lnð1 − e−ωðξn1þðα−1
2
Þ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1þN2

4

p
Þþm2a2ÞÞ

þ
X∞
n1¼0

ð2n1 þ N þ 3Þ lnð1 − e−ωðξn1þ1þðα−1
2
Þ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα−1

2
Þ2ξn1þ1þN2

4

p
Þþm2a2ÞÞ

�
: ð5:7Þ

TABLE I. Spectrum of =D2
S2
þ =D2

R2 and the corresponding
density of states.

Specð=D2
S2 þ =D2

R2 þm2Þ Density of states

λn1−1 þ 2n2B2
B2

2π
ð2n1þN−1Þ

4πa2

λ�n1 þ 2n2B2
B2

2π
ð2n1þNþ1Þ

4πa2

λn1þ1 þ 2n2B2
B2

2π
ð2n1þNþ3Þ

4πa2

λn1−1 þ 2n2B2 þ 2 B2

2π
ð2n1þN−1Þ

4πa2

λ�n1 þ 2n2B2 þ 2 B2

2π
ð2n1þNþ1Þ

4πa2

λn1−1 þ 2n2B2 þ 2 B2

2π
ð2n1þNþ3Þ

4πa2
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In (5.7), we have written the contribution of the zero modes
explicitly. ForN ¼ 1, we have the first sum in (5.5) starting
from n1 ¼ 1, and, hence, β1=2ðω; α; NÞ has the same form
except that there is no factor of 2 in front of the first term
in (5.7). We note that β1=2ðω; α; NÞ ¼ β1=2ðω; 1 − α; NÞ.
We can calculate the form β1=2ðω; α; NÞ takes in

the limit S2 ×R1;1 → R3;1. We let a → ∞, N → ∞, and
α → ∞ while keeping N=2a2 and α2=a2 constant. Since ω

is proportional to 1=a2, this practically means we can keep
ωα2 and ωN as such, while the terms which vanish as

a → ∞ are dropped. We find, for N ≥ 2, λ�n1 → λ�flat
n1 ¼

Nðn1 þ 1
2
Þ þ 2α2 þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1 þ 1

2
Þ þ α2Þ þ N2

4

q
and

λn1�1 → λflatn1�1 and, hence,

βflat1=2ðω; α; NÞ ¼ −
ωN
2

�
2 lnð1 − e−ωm

2a2Þ þ
X∞
n1¼1

lnð1 − e−ωðNðn1−1
2
Þþ2α2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1−1

2
Þþα2ÞþN2

4

p
þm2a2ÞÞ

þ
X∞
n1¼0

lnð1 − e−ωðNðn1þ1
2
Þþ2α2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1þ1

2
Þþα2ÞþN2

4

p
þm2a2ÞÞ

þ
X∞
n1¼1

lnð1 − e−ωðNðn1þ1
2
Þþ2α2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1þ1

2
Þþα2ÞþN2

4

p
þm2a2ÞÞ

þ
X∞
n1¼0

lnð1 − e−ωðNðn1þ3
2
Þþ2α2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1þ3

2
Þþα2ÞþN2

4

p
þm2a2ÞÞ

�
: ð5:8Þ

Shifting the index of first sum in (5.8), it is seen to be equal to the second sum in (5.8); similarly shifting the index of the last
sum to 1, it is seen to be equivalent to the third sum in (5.8). Thus, we obtain

βflat1=2ðω; α; NÞ ¼ −ωN
�
lnð1 − e−ωm

2a2Þ þ
X∞
n1¼0

lnð1 − e−ωðNðn1þ1
2
Þþ2α2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1þ1

2
Þþα2ÞþN2

4

p
þm2a2ÞÞ

þ
X∞
n1¼1

lnð1 − e−ωðNðn1þ1
2
Þþ2α2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2ðNðn1þ1

2
Þþα2ÞþN2

4

p
þm2a2ÞÞ

�
: ð5:9Þ

Using B1 ¼ N
2a2 and β ¼ α2

a2, we find that βflat1=2ðω; α; NÞ ¼
π2

3
f1=2ðy; β0Þ [cf. (3.9)]. We note that, for N ¼ 1, there is no

factor of 2 in front of the first term in the right-hand side
of (5.8), and, consequently, there is factor of 1

2
in front of the

first term in the rhs of (5.9).
In order to compare the effects of curvature and the

magnetic fields on the pair-production rates, we define

the ratio γ1=2ðω; α; NÞ ≔ β1=2ðω;α;NÞ
βflat
1=2ðω;α;NÞ. In Fig. 7, we plot the

profile of γ1=2ðω; α; NÞ at both a fixed value of the non-
Abelian charge α at different monopole strengths N as
well as at several values of α at a fixed N. We observe that
the pair-production rate remains less than that on the flat
space at given values of N and α. This is mainly due to the
n21 dependence of the eigenvalues (which is due to the
curvature effects) in the numerator causing it to be less
than the denominator of γ1=2ðω; α; NÞ. More concretely,
the energies λn1þ1 and λþm1−1 ¼ λm1−1 are larger than
λ−flatn1þ1 ¼ λflatn1þ1, where n1 ¼ 0; 1; 2;… and m1 ¼ 1; 2;…,
and, hence, the former are relatively harder to get filled by
the produced pairs. An increase in α triggers a decrease

in γ1=2ðω; α; NÞ, since λ−flatn1þ1 decreases with α and the
associated flat levels become relatively easier to get filled
compared to those in the curved background. These facts
are readily observed from the plots given in Fig. 8. With
increasing N, terms due to the zero modes become the
dominant contribution, and they drive γ1=2ðω; α; NÞ back
to the value 1 at large ω and, hence, the pair-production
rate to that of the flat case. Our results are essentially
independent of the infrared cutoff value for any physically
reasonable choice of the latter. In our calculations, we
have used m2a2 ¼ 1

2
.

It is also noteworthy to emphasize that the overall effect
for α ≠ 0 is greater than that without the non-Abelian field
(i.e., α ¼ 0). To see this, we can readily inspect the profiles

of R1=2ðω; N; αÞ≡ β1=2ðω;N;αÞ
β1=2ðω;N;0Þ. Plots at N ¼ 1, 2 at several

values of α are given in Figs. 9(a)–9(d) and for α ¼ 2 at
several values of N in Fig. 9(e). We see that there is an
increase in the pair production for α ≠ 0 compared to
α ¼ 0, while the rate of change in R1=2ðω; N;αÞ decreases
as N assumes larger values [see Fig. 9(e)]. We also observe
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that, as ω becomes large, the pair-production rates converge
back to what they are at α ¼ 0. The latter two results are
due to the dominating effect of the zero modes at larger
values of N and ω. For α > 1, at fixed N, R1=2ðω; N; αÞ
becomes larger with increasing α before it converges to 1 at
large ω, while for 0 ≤ α < 1

2
, we see that R1=2ðω; N; αÞ

increases with α and decreases toward the value 1 in the
interval 1

2
< α ≤ 1 and R1=2ðω; N; α ¼ 1Þ ¼ 1. All of these

features are readily explained by noting that, for 0 ≤ α ≤ 1
2
,

λþn1 < λþn1 jα¼0 ¼ λn1þ1jα¼0 ¼ λðn1þ1Þ−1jα¼0 ¼ ðn1 þ 1Þ
ðN þ n1 þ 1Þ, n1 ¼ 0; 1; 2;…, with λþn1 becoming smaller
with increasing α and reaching a local minimum at α ¼ 1

2
,

while for 1
2
≤ α ≤ 1 the same inequality continues to hold

with λþn1 increasing with α and becoming ðn1 þ 1ÞðN þ
n1 þ 1Þ at α ¼ 1. For α > 1, we have λn1þ1 < ðn1 þ 1Þ
ðN þ n1 þ 1Þ and λþn1 > ðn1 þ 1ÞðN þ n1 þ 1Þ, with the
former being energetically more favorable to get filled and

hence leading to an increased amplitude for the pair
production. Taking, a; α; N → ∞ with B1 ¼ N

2a2, β2 ¼ α2

a2

and β02 ¼ β2

B1
, we have R1=2ðω; α; NÞ → F1=2ðy; β0Þ as

readily inferred from the definition of R1=2ðω; N; αÞ.
For the case of vanishing abelian monopole charge

the spectrum of =D2
S2 is given in (D12). Using the latter,

we find that

ReðiSeffÞ ¼ −
Z

d2x
Z

dΩ2

E2

8π3
β1=2ðω; αÞ; ð5:10Þ

where

β1=2ðω;αÞ ¼−ω
�X∞

l¼0

ð2lþ 1Þ lnð1− e−ωða
2λþl þm2a2ÞÞ

þ
X∞
l¼1

ð2lþ 1Þ lnð1− e−ωða
2λ−l þm2a2ÞÞ

�
; ð5:11Þ

and λ�l ¼ 1
a2 ðl2 þ l þ 2ðα − 1

2
Þ2 � 2jα − 1

2
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl þ 1=2Þ2 þ ððα − 1
2
Þ2 − 1

4
Þ

q
Þ are given in (D12)

with l ¼ 0; 1; 2;… for the upper and l ¼ 1; 2;… for the
lower sign. Let us also remark that λþ0 ¼ 4

a2 ðα − 1
2
Þ2,

yielding a zero mode at α ¼ 1
2
. Note also that β1=2ðω; αÞ ¼

β1=2ðω; 1 − αÞ.FIG. 8. Lowest-lying eigenvalues as a function of α.

FIG. 7. γ1=2ðω; α; NÞ as a function of ω.
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Taking the limit S2 → R2, we find

βflat1=2ðω;αÞ ¼ −2ω
�X∞

l¼0

l lnð1− e−ωðl2þ2α2þ2jαj
ffiffiffiffiffiffiffiffiffi
l2þα2

p
þm2a2ÞÞ

þ
X∞
l¼1

l lnð1− e−ωðl2þ2α2−2jαj
ffiffiffiffiffiffiffiffiffi
l2þα2

p
þm2a2Þ

�
:

ð5:12Þ

Setting l
a → k and α

a → β and replacing 1
a

P
l
l
a with

R
kdk,

we find that βflat0 ðω;αÞ → π2

6
f1=2ðπE ; βÞ, where the last factor

is given in (3.11).
Below, we plot the profiles of γ1=2ðω; αÞ≡ β1=2ðω;αÞ

βflat
1=2ðω;αÞ

and

R1=2ðω; αÞ≡ β1=2ðω;αÞ
β1=2ðω;0Þ. From Fig. 10(a), we see that for 0 ≤

α ≤ 1
2
the pair-production amplitude is larger than that of

the flat case. We also see an increasing rate of change with
α, which is maximized at α ¼ 1

2
. The latter is essentially

due the zero modes in the spectrum at α ¼ 1
2
, which are

filled without any energy cost. For 1
2
< α ≤ 1, relative pair-

production rates decrease with increasing α, with the
maximal rate reached at α ¼ 1. For α > 1, γ1=2ðω; αÞ
remains less than the value 1 but slowly converges to it
at large ω. We can also note that the overall pair-
production amplitudes for α ≠ 0 are always greater com-
pared to that at α ¼ 0. From the plots in Fig. 10(b), we
observe that the rate of change in R1=2ðω; αÞ increases
with α for 0 ≤ α ≤ 1

2
, decreases for 1

2
< α ≤ 1, with

R1=2ðω; α ¼ 1Þ ¼ 1 as expected due to the α ↔ 1 − α
symmetry, and increases further above the value 1 for
α > 1. These features can be readily attributed to the
hierarchy among the lowest-lying energy levels λ�l and
λ�;flat
l as seen from Fig. 10(c).

FIG. 9. R1=2ðω; α; NÞ as a function of ω.
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VI. CONCLUSION

In this paper, we have calculated the Schwinger pair-
production rates in R3;1 as well as in the positively curved
space S2 ×R1;1 for spin-0 and spin-1

2
particles under the

influence of an external SUð2Þ ×Uð1Þ gauge field produc-
ing an additional uniform non-Abelian magnetic field
besides the usual uniform Abelian electric field. For this
purpose, we have obtained the spectrum of the gauged
Laplace and Dirac operators on both the flat and the curved
geometries and used them to evaluate the Euclidean effective
actions, which areWick rotated at an appropriate stage of the
calculation to determine the pair-production amplitudes.
From our results, we have seen that, depending on their
relative strength, the purely non-Abelian and the Abelian
parts of the magnetic field have either a counterplaying or
reinforcing role, whose overall effect may be to enhance or
suppress the pair-production rates. Positive curvature acts to
enhance the latter for spin-0 and suppress it for spin-1

2
fields,

while the details of the couplings to the purely Abelian and
the non-Abelian parts of the magnetic field, which were
studied through the dependence of the energy spectra to the

strength of these fields, played a critical role in determining
the cumulative effect on the pair-production rates.

APPENDIX A: SPECTRUM OF THE GAUGED
LAPLACIAN ON R2

We have the operator −D2
ð1Þ ¼ −ð ∂!− iA⃗ð1ÞÞ2, where

A⃗ð1Þ is valued in the Lie algebra of the gauge group
SUð2Þ × Uð1Þ and already given in (2.1). The latter yields
the field strength

F12 ¼ ∂1A2 − ∂2A1 þ i½A1; A2�

¼ B1

2
ð∂1x1 þ ∂2x2Þ12 − iβ2½σ2; σ1�

¼ B112 þ 2β2σ3: ðA1Þ

Here, the first term represents an Abelian magnetic field,
while the second term is a non-Abelian uniform magnetic
field due to a pure SUð2Þ gauge field. The spectrum of the
operator D2

ð1Þ is determined in [28]. Here, we reproduce the
result of this paper for convenience. We drop the subscript
(1) for ease in notation in what follows. We have

−D2 ¼ −ð∂1 − iA1Þ2 − ð∂2 − iA2Þ2
¼ −ð∂21 − 2iA1∂1 − A2

1Þ − ð∂22 − 2iA2∂2 − A2
2Þ

¼ −ð∂21 þ ∂
2
1Þ − ið−B1x2∂1 þ B1x1∂2 − 2βσ2∂1 þ 2βσ1∂2Þ þ

B2
1

4
ðx21 þ x22Þ þ B1βðx1σ1 þ x2σ2Þ þ 2β2

FIG. 10. γ1=2ðω; αÞ and R1=2ðω; αÞ at N ¼ 0, Lowest lying energy eigenvalues as function of α (c).
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¼ −4∂∂þ B1ðz̄ ∂−z∂Þ þ 4βðσ−∂ − σþ∂Þ þ
B2
1

4
jzj2 þ B1βðzσ− þ z̄σþÞ þ 2β2

¼ 2B1

�
−
2∂∂

B1

þ 1

2
ðz̄ ∂−z∂Þ þ 2β

B1

ðσ−∂ − σþ∂Þ þ
B1

8
jzj2 þ β

2
ðzσ− þ z̄σþÞ þ

β2

B1

�

¼ 2B1

�
a†aþ

ffiffiffi
2

p βffiffiffiffi
B

p ða†σþ þ aσ−Þ þ
1

2
þ β2

B1

�

¼ 2B1

�
a†aþ

ffiffiffi
2

p
β0ða†σþ þ aσ−Þ þ

1

2
ð1þ 2β02Þ

�
; ðA2Þ

where we have introduced z ¼ x1 þ ix2, z̄ ¼ x1 − ix2,
∂ ¼ 1

2
ð∂1 − i∂2Þ, ∂ ¼ 1

2
ð∂1 þ i∂2Þ, σþ ¼ 1

2
ðσ1 þ iσ2Þ, and

σ− ¼ 1
2
ðσ1 − iσ2Þ on the fourth line and the creation and

annihilation operators in the penultimate line of (A2) via

a¼ 1ffiffiffiffiffiffiffiffi
2B1

p
�
B1

2
zþ2∂

�
; a† ¼ 1ffiffiffiffiffiffiffiffi

2B1

p
�
B1

2
z̄−2∂

�
: ðA3Þ

It can readily be checked that ½a; a†� ¼ 1. In the last line
in (A2), we have also defined and used the dimensionless
non-Abelian magnetic field, which is scaled with respect to
the Abelian magnetic field β0 ≡ β=

ffiffiffiffiffiffi
B1

p
assuming B1 > 0.

In fact, if we change the direction of the Abelian magnetic
field, i.e., B1 → −B1, we have −D2 retain the form in the
last line of (A2) with B1 replaced with jB1j. Thus, in
general, we may write β0 ≡ β=

ffiffiffiffiffiffiffiffijB1j
p

.
In matrix form, operator −D2 can be written as

−D2¼2B1

0
@a†aþ 1

2
ð1þ2β02Þ ffiffiffi

2
p

β0a†ffiffiffi
2

p
β0a a†aþ 1

2
ð1þ2β02Þ

1
A: ðA4Þ

Clearly, D2 acts on the Hilbert space H ¼ C2 ⊗ F , where
F is the usual Fock space spanned by the eigenstates of the
number operator N ¼ a†a. The spectrum of D2 is obtained
in a manner similar to that of the Jaynes-Cummings
Hamiltonian [37]. This means that it can be diagonalized
in the subspace ofH2 ⊂ H spanned by the states jnþ 1;þi
and jn;−i, where n is the eigenvalue of the number
operator N and � denotes the isospin up and isospin
down, respectively. In this subspace, we can write the
matrix elements of D2

ðnÞ as

−D2
ðnÞ ≔ 2B1

0
@nþ 1

2
ð1þ 2β02Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þp
β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þp
β0 nþ 1

2
ð1þ 2β02Þ

1
A: ðA5Þ

Diagonalizing D2
ðnÞ yields the eigenvalues

Λ�
n ¼ 2B1ðnþ β02 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β02nþ 1=4

q
Þ; ðA6Þ

with n ¼ 0; 1; 2… for the upper and n ¼ 1; 2;… for the
lower sign. We note that the ground state is given by
Λþ
0 ¼ 2B1ðβ02 þ 1=2Þ, using the upper sign in (A6). Let us

remark that the corresponding eigenkets of energy are not
simultaneous eigenkets of the isospin operator. This is
expected, since −D2 does not commute with the third
component of the isospin operator σ3 (nor it does with any
component of σ⃗ for that matter). As in the Jaynes-
Cummings model [37], a generalized number operator
commuting with −D2 can be constructed. Since we do
not need these operators, we will not pursue their con-
struction here.
Let us note the two distinct limiting cases. We may take

B1 → 0 (hence, y ¼ B1=E → 0) and β → 0 such that β0 is
held fixed. This is the limit in which f0ðy; β0Þ → 1 as
discussed in Sec. II. We may also consider B1 → 0 and
n1 → ∞ such that 2B1n1 → k2, which gives the configu-
ration with pure non-Abelian magnetic field β. From (A6),
we immediately find Λ�

n → Λ� ¼ k2 þ 2β2 � 2βk. An
alternative and rigorous way to derive the spectrum for
this case is presented below.
We may start with the gauged operator −D2¼ð ∂!− iA⃗Þ2,

where now A⃗ ¼ A⃗SUð2Þ. We see that ½−D2; p⃗� ¼ 0, where

p⃗ ¼ −i ∂!. This means that the eigenvalues of p⃗, say, k⃗, are
good quantum numbers, and we can express the eigenfunc-

tions of −D2 in the form ψ ¼ ϕðx1; x2Þeik⃗·x⃗. On the latter,
−D2 takes the simple form

−D2 ¼
�
k2 þ 2β2 −2iβk−
2iβkþ k2 þ 2β2

�
; ðA7Þ

where we have defined k� ¼ k1 � ik2 and k2 ¼ k21 þ k22.
Diagonalizing this matrix, we find the eigenvalues D2 are

Λ� ¼ k2 þ 2β2 � 2βk: ðA8Þ
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Finally, we may write the spectrum of −D2
ð1Þ −D2

ð2Þ þm2 in R4 as

Specð−D2
ð1Þ −D2

ð2Þ þm2Þ ¼ k2 þ 2β2 � 2βkþ B2ð2nþ 1Þ þm2: ðA9Þ

APPENDIX B: SPECTRUM OF THE GAUGED DIRAC OPERATOR ON R2

Here, we determine the spectrum of the square of the Dirac operator introduced in (3.1). This operator is given as

=D ¼ γið∂i − iAiÞ; ðB1Þ

where we have dropped the subscripts (1) in order not to clutter the notation and the 2 × 2 γ matrices are given as γ1 ¼ τ1
and γ2 ¼ τ2, where τ1 and τ2 are the Pauli matrices. =D can be expressed in the 2 × 2 block matrix form as

=D ¼
 

0 ð∂1 − i∂2Þ þ B
2
ð−x1 þ ix2Þ þ βð−σ1 þ iσ2Þ

ð∂1 þ i∂2Þ þ B
2
ðx1 þ ix2Þ þ βðσ1 þ iσ2Þ 0

!
: ðB2Þ

Using the notation already introduced in the previous section and (A3) in =D, we can write it in the form

=D ¼ −
ffiffiffiffiffiffi
2B

p  
0 a† þ 2β0σ−

−a − 2β0σþ 0

!
: ðB3Þ

Squaring, we find

−=D2 ¼ 2B

 
a†aþ ffiffiffi

2
p

β0ðaσ− þ a†σþÞ þ 2β02σ−σþ 0

0 aa† þ ffiffiffi
2

p
β0ðaσ− þ a†σþÞ þ 2β02σþσ−

!
: ðB4Þ

Expanding the 2 × 2 blocks in (B4), we can cast −=D2 in
the form

−=D2 ¼ 2B

0
BBBB@

a†a
ffiffiffi
2

p
β0a† 0 0ffiffiffi

2
p

β0a a†aþ 2β02 0 0

0 0 aa† þ 2β02
ffiffiffi
2

p
β0a†

0 0
ffiffiffi
2

p
β0a aa†

1
CCCCA:

ðB5Þ
Alternatively, we may also note that

−=D2 ¼ −γiγjDiDj

¼ −D212 þ B1ðτ3 ⊗ 12Þ þ 2β2ðτ3 ⊗ σ3Þ; ðB6Þ
and this immediately yields (B5) upon using (A4).
We may write the eigenvalue equation in the form

−=D2Φ ¼ λΦ, with Φ≡ ðϕ1;ϕ2;ϕ3;ϕ4ÞT , with T standing
for transpose. This leads to the coupled set of operator
equations, which can be explicitly written as

ωcða†aϕ1 þ
ffiffiffi
2

p
β0a†ϕ2Þ ¼ λϕ1;

ωcð
ffiffiffi
2

p
β0aϕ1 þ a†aϕ2 þ 2β02ϕ2Þ ¼ λϕ2;

ωcðaa†ϕ3 þ 2β02ϕ3 þ
ffiffiffi
2

p
β0a†ϕ4Þ ¼ λϕ3;

ωcð
ffiffiffi
2

p
β0aϕ3 þ aa†ϕ4Þ ¼ λϕ4: ðB7Þ

We observe that the eigenkets of the operator −=D2

can easily be given in the tensor product space
H ¼ F × C2 ⊗ C2 ≡ F ⊗ C4. Here, the first copy of C2

stands for the spin and the second copy for the isospin space,
and the Fock space is spanned by the eigenstates of the
number operator N ¼ a†a as before. In order to solve (B7),
it is almost sufficient to consider the subspace Hn ⊂ H
spanned by the states fjnþ 1;þ;þi; jn;þ;−i; jn;−;þi;
jn − 1;−;−ig, where n ¼ 0; 1; 2;…, except for the last ket,
for which n ¼ 1; 2;…. We may write these kets in the form

jnþ 1;þ;þi≡

0
BBB@

jnþ 1i
0

0

0

1
CCCA; jn;þ;−i≡

0
BBB@

0

jni
0

0

1
CCCA;

jn;−;þi≡

0
BBB@

0

0

jni
0

1
CCCA; jn− 1;−;−i≡

0
BBB@

0

0

0

jn− 1i

1
CCCA:

ðB8Þ

In this subspace, we easily find that
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−=D2
ðnÞ ¼ 2B

0
BBBB@

nþ 1
ffiffiffi
2

p
β0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
0 0ffiffiffi

2
p

β0
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 2β02 0 0

0 0 nþ 1þ 2β02
ffiffiffi
2

p
β0

ffiffiffi
n

p

0 0
ffiffiffi
2

p
β0

ffiffiffi
n

p
n

1
CCCCA; ðB9Þ

and the eigenvalues of =D2 can are then readily computed
to be

λ�n ¼B1

�
1þ2nþ2β02�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4β02ð1þ2nþβ02Þ

q �
; ðB10Þ

with each eigenvalue occurring with multiplicity 2.
Let us remark that it is legitimate to take n ¼ 0 in this
expression. This yields λþ0 ¼ 2B1ð1þ 2β02Þ, and λ−0 ¼ 0.
Corresponding eigenkets should be determined with
some care. Eigenkets of these states belong to the
subspace spanned by the set fj0;þ;þi; j1;þ;þi; j0;þ;−i;
j0;−;þig, where we note that the state j0;þ;þi is not
covered by the notation forHn introduced above but clearly
belongs to the Hilbert space H. We find that the zero mode
solutions are

j0;þ;þi¼

0
BBBB@
j0i
0

0

0

1
CCCCA;

ð− ffiffiffi
2

p
β0j1;þ;þiþj0;þ;−iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2β02
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2β02
p

0
BBBB@
−
ffiffiffi
2

p
β0j1i

j0i
0

0

1
CCCCA;

ðB11Þ

while the eigenkets for the λþ0 eigenvalue are

j0;þ;þi¼

0
BBBB@

0

0

j0i
0

1
CCCCA;

ðj1;þ;þiþ ffiffiffi
2

p
β0j0;þ;−iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2β02
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2β02
p

0
BBBB@

j1iffiffiffi
2

p
β0j0i
0

0

1
CCCCA:

ðB12Þ
For n ≥ 1, we can write the corresponding orthonormal

eigenvectors associated with the eigenvalues (B10) in the
generic form

jψa�in ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2� þ 1
p ða�jnþ 1;þ;þi þ jn;þ;−iÞ;

jψb�in ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2� þ 1
p ðb�jn;−;þi þ jn − 1;−;−iÞ; ðB13Þ

where

a� ¼ 1 − 2β02 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β02ð1þ 2nþ β02Þ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 2

p
β0

;

b� ¼ 1þ 2β02 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β02ð1þ 2nþ β02Þ

p
2
ffiffiffiffiffiffi
2n

p
β0

: ðB14Þ

Here, ψa�
n are the eigenvectors corresponding to the

eigenvalues λþn , and ψb�
n are those corresponding to λ−n .

Let us also note that these states are also simultaneous
eigenstates of spin, since =D2 commutes with the spin
operator γ3 ⊗ 12 ¼ −iγ1γ2 ⊗ 12 ¼ τ3 ⊗ 12. jψa�in corre-
spond to spin up and jψb�in to spin down (note that� signs
are not indicating spin direction). These are not eigenstates
of isopin, though, sinceD2 and, hence, =D2 do not commute
with 12 ⊗ σ3. We may construct a generalized number
operator commuting with both =D2 and the isospin oper-
ators, but, as this is not necessary for our purposes, we do
not pursue it here.
To obtain the eigenvalues of −=D2 in the case of pure non-

Abelian magnetic field configuration, we may proceed as
follows. Setting B1 ¼ 0 in (B6) yields −=D2 ¼ −D2þ
2β2τ3 ⊗ σ3. Since =D commutes with p⃗, eigenvalues of
the latter are good quantum numbers. As before, we may
denote these eigenvalues with k⃗. Thus, −=D2 can be written
in matrix form as

−=D2 ¼

0
BBBB@

k2 −2iβk− 0 0

2iβkþ k2þ 4β2 0 0

0 0 k2þ 4β2 −2iβk−
0 0 2iβkþ k2

1
CCCCA: ðB15Þ

Diagonalization gives the eigenvalues

λ� ¼ k2 þ 2β2 � 2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ β2

q
; ðB16Þ

with each eigenvalue occurring with multiplicity 2. We
remark that, in this case, too, =D2 commutes with the spin
operator γ3 ⊗ 12 ¼ −iγ1γ2 ⊗ 12 ¼ τ3 ⊗ 12 but does not
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commute with the isospin. Therefore, the eigenstates of =D2

are simultaneous eigenstates of γ3 but not σ3. Observe also
that the � signs in the eigenvalues are not related with the
direction of the spin; in fact, for each sign� in λ�, there is a
state with spin up and a state with spin down. Also note
that (B16) can also be obtained from (B10) by taking the
limit B1 → 0, n → ∞ such that 2B1n → k2.
We can write the spectrum of −=D2 on R4. Together with

the Abelian magnetic field F34 ¼ B2 on the second R2

copy, we have

Specð−=D2þm2Þ¼
(
k2þ2β2�2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þβ2

p
þ2nB2;

k2þ2β2�2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þβ2

p
þð2nþ2ÞB2:

ðB17Þ

APPENDIX C: SPECTRUM OF THE GAUGED
LAPLACIAN ON S2

Here, we outline the result obtained already in [28]. We
consider the following gauged Laplace operator on S2 with
radius a:

D2 ¼ Λ⃗2

a2
; ðC1Þ

where Λ⃗ is given as

Λ⃗≡ r⃗ × ðp⃗ − A⃗Þ; ðC2Þ

and the SUð2Þ ×Uð1Þ gauge field A⃗ is explicitly written as

A⃗¼ A⃗Abelian þ A⃗non-Abelian; A⃗non-Abelian ≔ α
r⃗× σ⃗

a2
: ðC3Þ

In (C3), A⃗Abelian stands for the gauge potential of a Dirac
monopole with the magnetic charge N=2, N ∈Z, and σ⃗ are
the Pauli matrices spanning the “isospin” SUð2Þ gauge

symmetry. Associated field strength is computed via B⃗ ¼
∇!× A⃗ − iA⃗ × A⃗ and yields a radial magnetic field, which
takes the form17

B ¼ N
2a2

þ
�
2

�
α −

1

2

�
2

−
1

2

�
σ⃗ · r̂
a2

: ðC4Þ

From (C4) it is manifestly seen that B is symmetric under
α → ðα − 1Þ, which is a direct consequence of the gauge
transformation UBðαÞU ¼ Bðα − 1Þ, with U ≔ σ⃗ · r̂,
U† ¼ U, and U2 ¼ 12.
We may write, in the same manner as in the Landau

problem on S2 [38],

Λ⃗ ¼ L⃗þ N
2
r̂þ αðσ⃗ − ðσ⃗ · r̂Þr̂Þ

¼ Λ⃗Abelian þ αðσ⃗ − ðσ⃗ · r̂Þr̂Þ: ðC5Þ

where L⃗ ¼ Λ⃗Abelian − N
2
r̂ is the angular momentum solely

generated by the charge-Dirac monopole system. The total
angular momentum operator is found by adding the
contribution of the isospin:

J⃗ ¼ L⃗þ σ⃗

2
¼ r⃗ × ðp⃗ − A⃗AbelianÞ −

N
2
r̂þ σ⃗

2
;

¼ Λ⃗Abelian −
N
2
r̂þ σ⃗

2
;

¼ Λ⃗ − αðσ⃗ − ðσ⃗ · r̂Þr̂Þ − N
2
r̂þ σ⃗

2
: ðC6Þ

We have�
J⃗ þ

�
α −

1

2

�
σ⃗

�
2

¼
�
Λ⃗þ α

�
σ⃗ · r̂ −

N
2

�
r̂

�
2

: ðC7Þ

Upon using Λ⃗ · r̂ ¼ 0 ¼ r̂ · Λ⃗ and rearranging the terms,
this yields

D2 ¼ 1

a2

�
J⃗2 þ 1

4
−
N2

4
þ 2

�
α −

1

2

�
2

−
1

2
þ 2

�
α −

1

2

�

×

�
J⃗ · σ⃗ −

1

2
þ N

2
σ⃗ · r̂

�
þ N

2
σ⃗ · r̂

�
: ðC8Þ

It is useful to define X ≔ 2ðα − 1
2
ÞðJ⃗ · σ⃗ − 1

2
þ N

2
σ⃗ · r̂Þþ

N
2
σ⃗ · r̂. It squares to

X2 ¼ 4

�
α−

1

2

�
2
�
J⃗2 þ 1

4

�
−
��

α−
1

2

�
2

−
1

4

�
N2; ðC9Þ

which is diagonal in the total angular momentum basis. J⃗
carries the angular momentum values given by the tensor
product j≡ l ⊗ 1

2
¼ ðl − 1=2Þ ⊕ ðlþ 1=2Þ, where l is the

angular momentum of the charge monopole system. Setting
l ¼ n1 þ N

2
, possible values of j are j ¼ n1 þ N−1

2
and j ¼

n1 þ Nþ1
2

with n1 ¼ 0; 1; 2;… and N ¼ 1; 2;…. To be
more precise, the Hilbert space becomes block diagonal
in the total angular momentum basis and splits into the
direct sum of IRRs:

�
N − 1

2

�
⊕ 2

�
N þ 1

2

�
⊕ 2

�
N þ 3

2

�
⊕ � � � ; ðC10Þ

where the coefficients written in bold typeface denote the
multiplicities of the respective IRRs. Except the first IRR,

17Note that the choice of gauge for A⃗Abelian is immaterial for
our purposes.
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which corresponds to the ground state with n1 ¼ 0, each
IRR occurs twice. In the j ¼ n1 þ Nþ1

2
branch, we may shift

n1 → n1 − 1 and write the spectrum of D2 as

Λ�
n1ðαÞ ¼

1

a2

�
n1ðN þ n1Þ þ 2

�
α −

1

2

�
2

−
1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
α −

1

2

�
2

ðn1 þ NÞn1 þ
N2

4

s �
: ðC11Þ

We observe that Λ�
n1ðαÞ ¼ Λ�

n1ð1 − αÞ. Ground state energy
is given by Λþ

0 ¼ 1
a2 ð2ðα − 1

2
Þ2 − 1

2
þ N

2
Þ, where we have

taken n1 ¼ 0 and theþ sign in front of the square root term.
The latter follows from the continuity of the energy
spectrum as α → 0 matching the ground state energy of
the Landau problem on the sphere [38]. Hence, we have
n1 ¼ 0; 1; 2;… for Λþ

n1 and n1 ¼ 1; 2;… for Λ−
n1. Let us

immediately note that taking the limitN → ∞, a → ∞, and

α → ∞, such that B1 ¼ N
2a2, β

2 ¼ α2

a2 fixed, and β02 ¼ β2

B1
,

yields the spectrum of D2 on R2 given in (A6) as expected.
It is straightforward to see that D2 and J⃗ commute. We

may note that the only nontrivial commutators are ½Ji; σ⃗ · r̂�
and ½Ji; J⃗ · σ⃗�. These vanish as the following calculations
demonstrate:

½Ji; σ⃗ · r̂� ¼
	
ϵijkrjðpk − AkÞ −

N
2

riffiffiffiffiffiffiffi
rlrl

p þ σi
2
;
σnrnffiffiffiffiffiffiffiffiffiffi
rmrm

p



¼ ϵijk

	
rjðpk − AkÞ;

σnrnffiffiffiffiffiffiffiffiffiffi
rmrm

p


−
N
2

	
riffiffiffiffiffiffiffi
rlrl

p ;
σnrnffiffiffiffiffiffiffiffiffiffi
rmrm

p


þ rn
2r

½σi; σn�

¼ ϵijkrj

	
ðpk − AkÞ;

σnrnffiffiffiffiffiffiffiffiffiffi
rmrm

p


þ ϵijk

	
rj;

σnrnffiffiffiffiffiffiffiffiffiffi
rmrm

p


ðpk − AkÞ þ

rn
2r

½σi; σn�

¼ ϵijkrj

	
pk;

σnrnffiffiffiffiffiffiffiffiffiffi
rmrm

p


þ rn
2r

½σi; σn�

¼ −iϵijkrjσn
r2δnk − rnrk

r3
þ rn
2r

½σi; σn�

¼ −iϵijk
rj
r
σnδnk þ

rn
2r

½σi; σn�

¼ −iϵijk
rj
r
σk þ

rn
2r

2iϵinkσk

¼ 0; ðC12Þ

½Ji; Jjσj� ¼
	
Li þ

1

2
σi;

�
Lj þ

1

2
σj

�
σj




¼ ½Li; Lj�σj þ Lj½Li; σj� þ
1

2
½σi; Lj�σj þ

1

2
Lj½σi; σj�

¼ ½Li; Lj�σj þ
1

2
Lj½σi; σj�

¼ iϵijkðLkσj þ LjσkÞ
¼ 0: ðC13Þ

Therefore, we conclude that each energy level in (C11) is
(2jþ 1)-fold degenerate. The degeneracy of each branch
of these energy levels is, thus, the same as that of the
Landau problem on the sphere [38]. In particular, the
ground level with energy Λþ

0 is N-fold degenerate.
In the absence of the Abelian magnetic field, i.e., setting

N ¼ 0, the operator D2 takes the form

D2¼ 1

a2

�
J2þ1

4
þ2

�
α−

1

2

�
2

−
1

2
þ2

�
α−

1

2

�
ðJ⃗ · σ⃗−1=2Þ

�
;

ðC14Þ

while X ¼ 2ðα − 1
2
ÞðJ⃗ · σ⃗ − 1=2Þ ¼ 2ðα − 1

2
ÞðJ⃗2 − L⃗2 þ

1=4Þ with the eigenvalues 2ðα − 1
2
Þðlþ 1Þ for the IRR

j ¼ lþ 1=2 (l ¼ 0; 1; 2; 3;…) and −2ðα − 1
2
Þl for the IRR
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j ¼ l − 1=2 (l ¼ 1; 2; 3;…). Thus, the Hilbert space splits
into the direct sum

2

�
1

2

�
⊕ 2

�
3

2

�
⊕ � � � : ðC15Þ

The spectrum of D2 can be written as

Λþ
l;N¼0¼

1

a2

�
ðlþ1Þ2þ2

�
α−

1

2

�
2

−
1

2
þ2

�
α−

1

2

�
ðlþ1Þ

�
;

l¼0;1;2…; ðC16aÞ

Λ−
l;N¼0 ¼

1

a2

�
l2 þ 2

�
α −

1

2

�
2

−
1

2
− 2

�
α −

1

2

�
l

�
;

l ¼ 1; 2…: ðC16bÞ

Note that, as α → 0, we have that D2 ¼ L⃗2=a2, which
has the spectrum 1

a2 lðlþ 1Þ, l ¼ 0; 1; 2;…, and Λþ
l;N¼0

already gives a zero mode at l ¼ 0. We remark that, in this
limit, D2 becomes independent of J⃗2 as expected, and not
only in Λþ

l;N¼0 but also in Λ−
l;N¼0 we have l ¼ 0; 1; 2;….

Shifting l → l − 1 in Λþ
l;N¼0, we may write the spectrum

more compactly as Λ�
l;N¼0ðαÞ ¼ 1

a2 ðl2 þ 2ðα − 1
2
Þ2 − 1

2
�

2ðα − 1
2
ÞlÞ with l ¼ 1; 2… for α ≠ 0, while for α ¼ 0 only,

l ¼ 0; 1;… for the lower sign. Let us also remark that
Λ�
l;N¼0ðαÞ ¼ Λ∓

l;N¼0ð1 − αÞ indicates that the spectrum
remains the same under α ↔ 1 − α. As consequence, at
α ¼ 1, Λ−

l;N¼0 is a zero mode at l ¼ 1.
Taking l → ∞, a → ∞, γ → ∞, such that l

a → k and
α2

a2 → β remain finite, we obtain the spectrum on R2 given
in (A8).

APPENDIX D: SPECTRUM OF THE GAUGED
DIRAC OPERATOR ON S2

We consider the Dirac operator in the background of the
total magnetic field introduced in (C3). This Dirac operator
can be written as =D ¼ 1

a ðτ⃗ · Λ⃗þ 1Þ, where τ⃗ are the Pauli
matrices, spanning the Clifford algebra fτi; τjg ¼ 2δij, and

Λ⃗ is defined as previously in (C2). For the square of the
Dirac operator, we have

a2=D2 ¼ ðτ⃗ · Λ⃗þ 1Þ2

¼ ðτ⃗ · Λ⃗Þ2 þ 2τ⃗ · Λ⃗þ 1

¼ τiτjΛiΛj ¼ ðδij þ iϵijkτkÞΛiΛj þ 2τ⃗ · Λ⃗þ 1

¼ Λ2 þ i
2
ϵijk½Λi;Λj�τk þ 2τ⃗ · Λ⃗þ 1

¼ Λ2 þ i
2
ϵijk

	
Li þ

N
2
r̂i þ αðσi − σnr̂nr̂iÞ; Lj þ

N
2
r̂j þ αðσj − σmr̂mr̂jÞ



τk þ 2τ⃗ · Λ⃗þ 1

¼ Λ2 þ i
2
ϵijk

�
½Li; Lj� þ

N
2
½Li; r̂j� þ

N
2
½r̂i; Lj� − α½Li; σmr̂mr̂j� − α½σnr̂nr̂i; Lj�

− α2½σi; σmr̂mr̂j� − α2½σnr̂nr̂i; σj� þ α2½σi; σj� þ α2½σnr̂nr̂i; σmr̂mr̂j�
�
τk þ 2τ⃗ · Λ⃗þ 1

¼ Λ2 þ i
2
ϵijk

�
½Li; Lj� þ

N
2
½Li; r̂j� þ

N
2
½r̂i; Lj� − ασm½Li; r̂mr̂j� − ασn½r̂nr̂i; Lj�

− α2r̂mr̂j½σi; σm� − α2r̂nr̂i½σn; σj� þ α2½σi; σj� þ α2r̂nr̂ir̂mr̂j½σn; σm�
�
τk þ 2τ⃗ · Λ⃗þ 1

¼ Λ2 þ τ⃗ · Λ⃗ −
N
2
τ⃗ · r̂þ 1 − 2

��
α −

1

2

�
2

−
1

4

�
ðτ⃗ · r̂Þðσ⃗ · r̂Þ: ðD1Þ

Using J⃗ ¼ L⃗þ σ⃗
2
, we have the intermediate expression

a2=D2 ¼ J2 þ 2

�
α −

1

2

�
J⃗ · σ⃗ þ 3

4
− 3αþ 2α2 þ Nασ⃗ · r̂ −

N2

4
þ τ⃗ · J⃗

þ
�
α −

1

2

�
τ⃗ · σ⃗ − 2α

�
α −

1

2

�
ðσ⃗ · r̂Þðτ⃗ · r̂Þ þ 1: ðD2Þ
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At this stage, we may introduce the total angular momen-
tum operator K⃗ and the operator τ⃗ · J⃗ as

K⃗ ¼ J⃗ þ τ⃗

2
¼ L⃗þ σ⃗

2
þ τ⃗

2
; ðD3aÞ

τ⃗ · J⃗ ¼ K2 − J2 −
τ2

4
: ðD3bÞ

These allow us to express =D2 in the form

a2=D2 ¼ K2 −
�
N2

4
− 2

�
α −

1

2

�
2
�

þ
	
2

�
α −

1

2

��
K⃗ · σ⃗ −

1

2

�
þ Nασ⃗ · r̂

− 2α

�
α −

1

2

�
ðσ⃗ · r̂Þðτ⃗ · r̂Þ



: ðD4Þ

In this expression, the first two terms are already diagonal,
but we have to diagonalize the operator in the brackets
χ ≔ 2ðα − 1

2
ÞðK⃗ · σ⃗ − 1

2
Þ þNασ⃗ · r̂ − 2αðα − 1

2
Þðσ⃗ · r̂Þðτ⃗ · r̂Þ.

Squaring it, we find

χ2 ¼ 4

�
α −

1

2

�
2
�
K2 þ 1

4

�
−
��

α −
1

2

�
2

−
1

4

�

×

�
N2 − 4

�
α −

1

2

�
2
�
; ðD5Þ

which is diagonal in the total angular momentum basis. We
let l represent the angular momentum of the charge-Dirac
monopole system as before. Then, the total angular
momentum K could take on the possible values given
by the tensor product

k≡ l⊗
1

2
⊗

1

2

≡ ðlþ 1Þ⊕ 2l⊕ ðl− 1Þ

¼
�
n1þ

N
2
þ 1

�
⊕ 2

�
n1þ

N
2

�
⊕
�
n1þ

N
2
− 1

�
; ðD6Þ

where in the last line we have used l ¼ n1 þ N
2
, with N ¼

1; 2;… and n1 ¼ 0; 1; 2;… except in the last direct
summand at N ¼ 1 for which n1 ¼ 1; 2;…. Thus, at a
given orbital angular momentum, the spectrum of =D2 has
four distinct eigenvalues, and we may express them as

λn1þ1ðαÞ¼
1

a2

�
ξn1þ1þ

�
α−

1

2

�
2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
α−

1

2

�
2

ξn1þ1þ
N2

4

s �
;

ðD7aÞ

λ�n1ðαÞ ¼
1

a2

�
ξn1 þ

�
α −

1

2

�
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
α −

1

2

�
2

ξn1 þ
N2

4

s �
;

ðD7bÞ

λn1−1ðαÞ¼
1

a2

�
ξn1−1þ

�
α−

1

2

�
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
α−

1

2

�
2

ξn1−1þ
N2

4

s �
;

ðD7cÞ

where

ξn1ðαÞ ¼
�
n1 þ

1

2

�
2

þ N

�
n1 þ

1

2

�
þ
��

α −
1

2

�
2

−
1

4

�
;

ðD8Þ

and each eigenvalue being (2kþ 1)-fold degenerate with
k ¼ lþ 1; l; l − 1 as given in (D6). Clearly, the spectrum is
symmetric under α ↔ 1 − α. For N ≥ 2, this spectrum has
zero modes at the branches λ−n1 and λn1−1 for n1 ¼ 0. For
N ¼ 1, we have from (D7c) that the set of eigenvalues
λn1−1 starts with n1 ¼ 1, since the IRR ðn1 þ N

2
− 1Þ does

not exist at N ¼ 1; n1 ¼ 0, meaning that this branch does
not include a zero mode, while the spectrum of =D2 retains
the zero mode from the branch λ−n1 . Let us recall that at
N ¼ 0 and α ¼ 0, i.e., in the absence of the entire
magnetic background, the Dirac operator on S2 has no
zero modes. In a similar manner, for the present problem,
absence of the zero mode in the branch λn1−1 at N ¼ 1 can,
therefore, be understood as the insufficient contribution of
the Dirac monopole flux to the total angular momentum to
compensate the total spin and isospin down contributions
to the latter.
To make these results manifestly clear, first, let us note

that, as α → 0, we have

χjα¼0≕χ0 ¼ −ðK⃗ · σ⃗ − 1=2Þ ¼ −ðK⃗2 − M⃗2 þ 1=4Þ; ðD9Þ

where M⃗ ¼ L⃗þ τ⃗
2
and from (D4) we immediately recover

a2=D2 ¼ M⃗2 − N2

4
þ 1

4
, which is the standard form of the

Dirac operator on S2 in the presence of the Dirac
monopole [39] and manifestly independent of K⃗2 and
dependent on M⃗2. Its spectrum can easily be written and
matches with that obtained from (D7) by taking α → 0.
This yields one copy of the set of eigenvalues ðn1 þ 1Þ2 þ
ðn1 þ 1ÞN and n21 þ n1N for isospin up and one for isospin
down with n1 ¼ 0; 1;… and N ≥ 1, with the zero modes at
n1 ¼ 0 from the latter set for both the isospin up and down
configurations.
In the present case, for the branch λn1−1 at n1 ¼ 0 and

N ≥ 2, we have to be careful about the square root term in
the rhs of (D7c). In this case, we find that χ2 has the
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eigenvalue ðN
2
− 2ðα − 1

2
Þ2Þ2. Above, we have already

seen how the spectrum and, in particular, the zero modes
of =D2 are obtained in the α → 0 limit. By continuity in α,
we conclude that the correct eigenvalue of χ is N

2
− 2

ðα − 1
2
Þ2 (which could be positive or negative depending

on the values of N and α), and this yields the zero mode
in the indicated branch. In other words, for n1 ¼ 0 and

N ≥ 2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðα − 1

2
Þ2ξn1−1 þ N2=4

q
in (D7c) is replaced

with N
2
− 2ðα − 1

2
Þ2.

We may note that, taking the limit N → ∞, a → ∞, and
α → ∞, such that B1 ¼ N

2a2, β2 ¼ α2

a2 kept fixed, and

β02 ¼ β2

B1
, yields the spectrum of =D2 on R2 given in (B10)

as expected.

In the absence of the Abelian magnetic field, =D2 takes
the form

=D2 ¼ K2 þ 2

�
α −

1

2

�
2

þ χ; ðD10Þ

and χ ¼ 2ðα − 1
2
ÞðK⃗ · σ⃗ − 1

2
Þ − 2ððα − 1

2
Þ2 − 1

4
Þðσ⃗ · r̂Þðτ⃗ · r̂Þ,

with the eigenvalues �2jα − 1
2
jððkþ 1

2
Þ2 þ ðα − 1

2
Þ2 − 1

4
Þ as

easily seen from (D5) after setting N ¼ 0 in that expres-
sion. Total angular momentum K⃗ could carry the irreduc-
ible representations: ðlþ 1Þ; l; l; ðl − 1Þ with l ¼ 0; 1;…
for the first two of the IRRs and l ¼ 1; 2;… for the
remaining two. The spectrum of =D2 becomes

λlþ1ðαÞ ¼
1

a2

�
l2 þ 3lþ 2þ 2

�
α −

1

2

�
2

− 2





α −
1

2






ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3=2Þ2 þ

��
α −

1

2

�
2

−
1

4

�s �
; ðD11aÞ

λ�l ðαÞ ¼
1

a2

�
l2 þ lþ 2

�
α −

1

2

�
2

� 2





α −
1

2






ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1=2Þ2 þ

��
α −

1

2

�
2

−
1

4

�s �
; ðD11bÞ

λl−1ðαÞ ¼
1

a2

�
l2 − lþ 2

�
α −

1

2

�
2

þ 2





α −
1

2






ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1=2Þ2 þ

��
α −

1

2

�
2

−
1

4

�s �
; ðD11cÞ

where l ¼ 0; 1;… for λlþ1 and λþl and l ¼ 1; 2;… for λ−l and λl−1. Quite interestingly, we notice that
λþl jl¼0 ¼ λl−1jl¼1 ¼ 4ðα − 1

2
Þ2, from which we make the observation that these states produce zero modes at the special

value α ¼ 1
2
of the non-Abelian gauge coupling. Taking l → lþ 1 in λl−1 yields the same as λþl and l → l − 1 in λlþ1 yields

the same as λ−l . Thus, we may write the spectrum in (D11a) as

λ�l ðαÞ ¼
1

a2

�
l2 þ lþ 2

�
α −

1

2

�
2

� 2jα −
1

2






ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1=2Þ2 þ

��
α −

1

2

�
2

−
1

4

�s �
; ðD12Þ

with l ¼ 0; 1; 2;… for the upper and l ¼ 1; 2;… for the lower sign and each eigenvalue occurring with multiplicity 2. We
see that λ�l ðαÞ ¼ λ�l ð1 − αÞ; i.e., the spectrum remains the same under α ↔ 1 − α. Taking α → 0, we obtain from (D11a)
the eigenvalues ðlþ 1Þ2 with l ¼ 0; 1;…, and this matches with the spectrum of =D2 on S2. These two facts uniquely fix the
sign choices in front of the square root term in (D12).
Finally, we note that, with l → ∞, a → ∞, and α → ∞, such that la → k, α

2

a2 → β2 remaining finite, we obtain the spectrum
on R2 given in (B16).
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Cayssol, M. Goerbig, J. Troost, E. Baudin, and B. Plaçais,
Mesoscopic Klein-Schwinger effect in graphene, Nat. Phys.
19, 830 (2023).

[16] D. Karabali, S. Kürkçüoğlu, and V. Nair, Magnetic field and
curvature effects on pair production. I. Scalars and spinors,
Phys. Rev. D 100, 065005 (2019).

[17] D. Karabali, S. Kürkçüoğlu, and V. Nair, Magnetic field and
curvature effects on pair production. II. Vectors and im-
plications for chromodynamics, Phys. Rev. D 100, 065006
(2019).

[18] L. Brown and W. Weisberger, Vacuum polarization in
uniform non-Abelian gauge fields, Nucl. Phys. B157, 285
(1979).

[19] P. Hasenfratz and G. ’t Hooft, Fermion-boson puzzle in a
gauge theory, Phys. Rev. Lett. 36, 1119 (1976).

[20] R. Jackiw and C. Rebbi, Spin from isospin in a gauge
theory, Phys. Rev. Lett. 36, 1116 (1976).

[21] A. P. Balachandran and G. Immirzi, The Fuzzy Ginsparg-
Wilson algebra: A solution of the fermion doubling prob-
lem, Phys. Rev. D 68, 065023 (2003).

[22] A. Yildiz and P. H. Cox, Vacuum behavior in quantum
chromodynamics, Phys. Rev. D 21, 1095 (1980); M.
Claudson, A. Yildiz, and P. H. Cox, Vacuum behavior in
quantum chromodynamics II, Phys. Rev. D 22, 2022
(1980).

[23] K. Osterloh, M. Baig, L. Santos, P. Zoller, and M.
Lewenstein, Cold atoms in non-Abelian gauge potentials:
From the Hofstadter ‘moth’ to lattice gauge theory, Phys.
Rev. Lett. 95, 010403 (2005).

[24] J. Ruseckas, G. Juzeliūnas, P. Oehberg, and M.
Fleischhauer, Non-Abelian gauge potentials for ultra-cold
atoms with degenerate dark states, Phys. Rev. Lett. 95,
010404 (2005).

[25] N. Goldman, A. Kubasiak, P. Gaspard, and M. Lewenstein,
Ultracold atomic gases in non-Abelian gauge potentials:
The case of constant Wilson loop, Phys. Rev. A 79, 023624
(2009).

[26] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)
[Sov. Phys. Solid State 2, 1109 (1960)]; Yu. L. Bychkov and
E. I. Rashba, Oscillatory effects and the magnetic suscep-
tibility of carriers in inversion layers, J. Phys. C 17, 6039
(1984).

[27] G. Dresselhaus, Spin-orbit coupling effects in zinc blende
structures, Phys. Rev. 100, 580 (1955).

[28] B. Estienne, S. Haaker, and K. Schoutens, Particles in non-
Abelian gauge potentials: Landau problem and insertion of
non-Abelian flux, New J. Phys. 13, 045012 (2011).

[29] Y. Li, S. C. Zhang, and C. Wu, Topological insulators
with SU(2) Landau levels, Phys. Rev. Lett. 111, 186803
(2013).

[30] Y. Li and C. Wu, High-dimensional topological insulators
with quaternionic analytic Landau levels, Phys. Rev. Lett.
110, 216802 (2013).

[31] Y. Li, K. Intriligator, Y. Yu, and C. Wu, Isotropic Landau
levels of Dirac fermions in high dimensions, Phys. Rev. B
85, 085132 (2012).

[32] M. F. Wondrak, W. D. van Suijlekom, and H. Falcke,
Gravitational pair production and black hole evaporation,
Phys. Rev. Lett. 130, 221502 (2023).

[33] M. P. Hertzberg and A. Loeb, Inconsistency with de Sitter
spacetime of “Gravitational Pair Production and Black Hole
Evaporation”, arXiv:2307.05243.

[34] M. N. Chernodub, Conformal anomaly and gravitational
pair production, arXiv:2306.03892.

[35] S. C. Zhang and J. p. Hu, A four-dimensional generalization
of the quantum Hall effect, Science 294, 823 (2001); D.
Karabali and V. P. Nair, Quantum Hall effect in higher
dimensions, Nucl. Phys. B641, 533 (2002); K. Hasebe and
Y. Kimura, Dimensional hierarchy in quantum Hall effects
on fuzzy spheres, Phys. Lett. B 602, 255 (2004); Ü. H.
Coşkun, S. Kürkçüoğlu, and G. C. Toga, Quantum Hall
effect on odd spheres, Phys. Rev. D 95, 065021 (2017).

[36] K. Hasebe, Split-Quaternionic Hopf map, quantum Hall
effect and twistor theory, Phys. Rev. D 81, 041702 (2010).

[37] E. Jaynes and F. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE 51, 89 (1963).

[38] F. Haldane, Fractional quantization of the Hall effect: A
hierarchy of incompressible quantum fluid states, Phys. Rev.
Lett. 51, 605 (1983).

[39] A. P. Balachandran, S. Kürkçüoğlu, and S. Vaidya, Lectures
on Fuzzy and Fuzzy SUSY Physics (World Scientific,
Singapore, 2007).

NON-ABELIAN MAGNETIC FIELD AND CURVATURE EFFECTS … PHYS. REV. D 108, 105021 (2023)

105021-29

https://doi.org/10.1007/BF01343663
https://doi.org/10.1103/PhysRevD.2.1191
https://doi.org/10.1103/PhysRevD.58.105022
https://doi.org/10.1103/PhysRevD.58.105022
https://doi.org/10.1103/PhysRevD.78.061701
https://doi.org/10.1103/PhysRevD.72.105004
https://doi.org/10.1103/PhysRevD.72.105004
https://doi.org/10.1103/PhysRevD.72.065001
https://doi.org/10.1103/PhysRevLett.101.130404
https://doi.org/10.1103/PhysRevLett.101.130404
https://doi.org/10.1016/j.ppnp.2023.104068
https://doi.org/10.1016/j.ppnp.2023.104068
https://doi.org/10.1126/science.abi8627
https://doi.org/10.1038/s41567-023-01978-9
https://doi.org/10.1038/s41567-023-01978-9
https://doi.org/10.1103/PhysRevD.100.065005
https://doi.org/10.1103/PhysRevD.100.065006
https://doi.org/10.1103/PhysRevD.100.065006
https://doi.org/10.1016/0550- 3213(79)90508-x
https://doi.org/10.1016/0550- 3213(79)90508-x
https://doi.org/10.1103/PhysRevLett.36.1119
https://doi.org/10.1103/PhysRevLett.36.1116
https://doi.org/10.1103/PhysRevD.68.065023
https://doi.org/10.1103/PhysRevD.21.1095
https://doi.org/10.1103/PhysRevD.22.2022
https://doi.org/10.1103/PhysRevD.22.2022
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevA.79.023624
https://doi.org/10.1103/PhysRevA.79.023624
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1088/1367-2630/13/4/045012
https://doi.org/10.1103/PhysRevLett.111.186803
https://doi.org/10.1103/PhysRevLett.111.186803
https://doi.org/10.1103/PhysRevLett.110.216802
https://doi.org/10.1103/PhysRevLett.110.216802
https://doi.org/10.1103/PhysRevB.85.085132
https://doi.org/10.1103/PhysRevB.85.085132
https://doi.org/10.1103/PhysRevLett.130.221502
https://arXiv.org/abs/2307.05243
https://arXiv.org/abs/2306.03892
https://doi.org/10.1126/science.294.5543.823
https://doi.org/10.1016/S0550-3213(02)00634- X
https://doi.org/10.1016/j.physletb.2004.04.093
https://doi.org/10.1103/PhysRevD.95.065021
https://doi.org/10.1103/PhysRevD.81.041702
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevLett.51.605

