Basit öğe kaydını göster

dc.contributor.authorSevimli, Rasim A.
dc.contributor.authorUcuncu, Murat
dc.contributor.authorKoc, Aykut
dc.date.accessioned2024-05-06T10:18:17Z
dc.date.available2024-05-06T10:18:17Z
dc.date.issued2023
dc.identifier.issn2475-1472en_US
dc.identifier.urihttp://hdl.handle.net/11727/12054
dc.description.abstractThe need for visual perception systems providing situational awareness to autonomous vehicles has grown significantly. While traditional deep neural networks are effective for solving 2-D Euclidean problems, point cloud analysis, particularly for radar data, contains unique challenges because of the irregular geometry of point clouds. This letter proposes a novel transformer-based architecture for radar point clouds adapted to the graph signal processing (GSP) framework, designed to handle non-Euclidean and irregular signal structures. We provide experimental results by using well-established benchmarks on the nuScenes and RadarScenes datasets to validate our proposed method.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1109/LSENS.2023.3327593en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSensor applicationsen_US
dc.subjectautomotive RADARen_US
dc.subjectgraph signal processing (GSP)en_US
dc.subjectpoint cloud processingen_US
dc.subjectsegmentationen_US
dc.subjecttransformersen_US
dc.titleRadGT: Graph and Transformer-Based Automotive Radar Point Cloud Segmentationen_US
dc.typearticleen_US
dc.relation.journalIEEE SENSORS LETTERSen_US
dc.identifier.volume7en_US
dc.identifier.issue11en_US
dc.identifier.wos001104464800007en_US
dc.identifier.scopus2-s2.0-85176308753en_US
dc.contributor.orcID0000-0002-2113-1398en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.contributor.researcherIDKDO-6837-2024en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster