dc.contributor.author | Sevimli, Rasim A. | |
dc.contributor.author | Ucuncu, Murat | |
dc.contributor.author | Koc, Aykut | |
dc.date.accessioned | 2024-05-06T10:18:17Z | |
dc.date.available | 2024-05-06T10:18:17Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 2475-1472 | en_US |
dc.identifier.uri | http://hdl.handle.net/11727/12054 | |
dc.description.abstract | The need for visual perception systems providing situational awareness to autonomous vehicles has grown significantly. While traditional deep neural networks are effective for solving 2-D Euclidean problems, point cloud analysis, particularly for radar data, contains unique challenges because of the irregular geometry of point clouds. This letter proposes a novel transformer-based architecture for radar point clouds adapted to the graph signal processing (GSP) framework, designed to handle non-Euclidean and irregular signal structures. We provide experimental results by using well-established benchmarks on the nuScenes and RadarScenes datasets to validate our proposed method. | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.1109/LSENS.2023.3327593 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sensor applications | en_US |
dc.subject | automotive RADAR | en_US |
dc.subject | graph signal processing (GSP) | en_US |
dc.subject | point cloud processing | en_US |
dc.subject | segmentation | en_US |
dc.subject | transformers | en_US |
dc.title | RadGT: Graph and Transformer-Based Automotive Radar Point Cloud Segmentation | en_US |
dc.type | article | en_US |
dc.relation.journal | IEEE SENSORS LETTERS | en_US |
dc.identifier.volume | 7 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.wos | 001104464800007 | en_US |
dc.identifier.scopus | 2-s2.0-85176308753 | en_US |
dc.contributor.orcID | 0000-0002-2113-1398 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | en_US |
dc.contributor.researcherID | KDO-6837-2024 | en_US |