Show simple item record

dc.contributor.authorBulut, Murat
dc.contributor.authorAnkishan, Haydar
dc.contributor.authorDemircioglu, Erdem
dc.contributor.authorAri, Seckin
dc.contributor.authorSengul, Orhan
dc.date.accessioned2024-02-06T11:41:32Z
dc.date.available2024-02-06T11:41:32Z
dc.date.issued2014
dc.identifier.issn0941-0643en_US
dc.identifier.urihttp://hdl.handle.net/11727/11433
dc.description.abstractEthylene glycol-water mixtures (EGWM) are vital for cooling engines in automotive industry. Scarce information is available in the literature for estimating the heat transfer coefficients (HTC) of EGWM using knowledge-based estimation techniques such as adaptive neuro-fuzzy inference systems (ANFIS) and artificial neural networks (ANN) which offer nonlinear input-output mapping. In this paper, the supervised learning methods of ANFIS and ANN are exploited for estimating the experimentally determined HTC. This original research fulfills the preceding modeling efforts on thermal properties of EGWM and HTC applications in the literature. An experimental test setup is designed to compute HTC of mixture over a small circular aluminum heater surface, 9.5 mm in diameter, placed at the bottom 40-mm-wide wall of a rectangular channel 3 mm x 40 mm in cross section. Measurement data are utilized as the train and test data sets of the estimation process. Prediction results have shown that ANFIS provide more accurate and reliable approximations compared to ANN. ANFIS present correlation factor of 98.81 %, whereas ANN estimate 87.83 % accuracy for test samples.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/s00521-013-1453-4en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHeat transfer coefficienten_US
dc.subjectEthylene glycol-water mixtureen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectArtificial neural networken_US
dc.titleA Novel Approach for Estimating Heat Transfer Coefficients of Ethylene Glycol-Water Mixturesen_US
dc.typearticleen_US
dc.relation.journalNEURAL COMPUTING & APPLICATIONSen_US
dc.identifier.volume25en_US
dc.identifier.issue1en_US
dc.identifier.startpage115en_US
dc.identifier.endpage121en_US
dc.identifier.wos000338191300011en_US
dc.identifier.scopus2-s2.0-84902455720en_US
dc.contributor.orcIDhttps://orcid.org/0000-0002-6240-2545en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.contributor.researcherIDAAH-4421-2019en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record