Basit öğe kaydını göster

dc.contributor.authorKilicoglu, Seyda
dc.contributor.authorYurttancikmaz, Semra
dc.date.accessioned2023-09-14T08:08:49Z
dc.date.available2023-09-14T08:08:49Z
dc.date.issued2022
dc.identifier.issn0354-9836en_US
dc.identifier.urihttps://doiserbia.nb.rs/img/doi/0354-9836/2022/0354-983622559K.pdf
dc.identifier.urihttp://hdl.handle.net/11727/10643
dc.description.abstractThere are many ways to approximate cosine curve. In this study we have examined the way how the cosine curve can be written as any order Bezier curve. As a result using the Maclaurin series we have examined cosine curve as the 4(th) and the 6(th) order Bezier curve based on the control points with matrix form in E-2. We give the control points of the 4(th) and the 6(th) order Bezier curve based on the coefficients. Also we give the coefficients based on the the control points of the 4(th) and the 6(th) order Bezier curve too.en_US
dc.language.isoengen_US
dc.relation.isversionof10.2298/TSCI22S2559Ken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcosine curveen_US
dc.subject4(th) order Bezier curveen_US
dc.subject6(th) order Bezier curveen_US
dc.subjectMaclaurin seriesen_US
dc.titleHow to Approximate Cosine Curve with 4(Th) and 6(Th) Order Bezier Curve in Plane?en_US
dc.typearticleen_US
dc.relation.journalTHERMAL SCIENCEen_US
dc.identifier.volume26en_US
dc.identifier.issueSupplement 2en_US
dc.identifier.startpageS559en_US
dc.identifier.endpageS570en_US
dc.identifier.wos000921231700007en_US
dc.identifier.eissn2334-7163en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster