Basit öğe kaydını göster

dc.contributor.authorAnkishan, Haydar
dc.contributor.authorTuncer, A. Turgut
dc.date.accessioned2023-07-20T08:26:38Z
dc.date.available2023-07-20T08:26:38Z
dc.date.issued2017
dc.identifier.issn2380-9345en_US
dc.identifier.urihttp://hdl.handle.net/11727/10002
dc.description.abstractSnoring is widely known as a disease. The aim of this paper is to introduce and validate our newly developed snoring detection device to identify automatically snore and non-snore sounds using a nonlinear analysis technique. The developed device can analyze chaotic features of a snore related sounds such as entropy, Largest Lyapunov Exponents (LLEs) and also has the data classification ability depending on the feature values. We report that the developed snoring detection device with proposed automatic classification method could achieve an accuracy of 94.38% for experiment I and 82.02 for experiment II when analyzing snore and non-snore sounds from 22 subjects. This study revealed the efficacy of our newly developed snoring detection device and indicated that it may be used at home an alternative to diagnose snore related sounds. It is anticipated that our findings will contribute to the development of an automated snore analysis system to be used in sleep studies.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPortable Snore analyzeren_US
dc.subjectSnore Related Soundsen_US
dc.subjectHome-use sleep recorderen_US
dc.titleA New Portable Device for the Snore/Non-Snore Classificationen_US
dc.typeconferenceObjecten_US
dc.identifier.wos000454987100074en_US
dc.identifier.scopus2-s2.0-85047845600en_US
dc.contributor.orcID0000-0002-6240-2545en_US
dc.contributor.researcherIDAAH-4421-2019en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster