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ABSTRACT 
 

Tolga KAYIN 

END-TO-END, REAL TIME AND ROBUST BEHAVIORAL PREDICTION 

MODULE WITH ROBOT OPERATING SYSTEM FOR AUTONOMOUS 

VEHICLES 

Başkent University Institute of Science 

The Department of Computer 

Engineering 2023 

 
In the world, where urbanization and population density are increasing, transportation 

methods are also diversifying and the use of unmanned vehicles is becoming widespread. In 

order for unmanned vehicles to perform their tasks autonomously, they need to be able to 

perceive their own position, the environment and predict the possible movements/routes of 

environmental factors, similar to living things. In autonomous vehicles, it is extremely 

important for the safety of the vehicle and the surrounding factors, to be able to forecast the 

probable future location of the objects around it with high performance so that the vehicle 

can plan itself correctly. Due to the stated reasons, the behavioral prediction module is a very 

important component for autonomous vehicles, especially in moving environments. In this 

study, a robotic behavioral prediction module has been developed to enable the autonomous 

vehicle to plan more safely and successfully. Data has been collected by driving with an 

autonomous vehicle, and the developed module has been tested. The relevant module has 

been integrated into the ongoing autonomy project. The proposed method has been observed 

to operate accurately and fast within up to three seconds. 

 
KEYWORDS: Behavioral Prediction, Trajectory Prediction, Autonomous Vehicles, 

Robotic Operating System, ROS 

 

 
Advisor: Asst. Prof. Dr. Çağatay Berke ERDAŞ, Başkent University, Department of 

Computer Engineering.
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ÖZET 

 

Tolga KAYIN 

OTONOM ARAÇLAR İÇİN UÇTAN-UCA, GERÇEK ZAMANLI VE HATAYA 

DİRENÇLİ DAVRANIŞSAL TAHMİN MODÜLÜ 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

2023 

 
 

Küresel olarak nüfus yoğunluğunun arttığı şehirleşme sürecinde, ulaşım seçenekleri 

çeşitlenmekte ve insansız araçlar daha yaygın hale gelmektedir. İnsansız araçlar, kendi 

görevlerini otonom bir şekilde yerine getirebilmek için canlı organizmalar gibi çevrelerini 

algılayabilmeli, konumlarını belirleyebilmeli ve çevresel faktörlerin olası hareketlerini ya da 

yollarını tahmin edebilmelidir. Otonom araçlar, etkili bir planlama gerçekleştirebilmek için 

çevredeki nesnelerin gelecekteki pozisyonlarını doğru bir şekilde tahmin edebilmelidir. Bu, 

hem aracın güvenliği hem de çevredeki faktörlerin güvenliği açısından son derece kritik bir 

unsurdur. Davranışsal tahmin yeteneği olmayan bir otonom araç, tüm nesneleri sabit olarak 

varsayarak planlama yapar, ancak bu, otoyol koşulları veya şehir içi trafik senaryolarında 

araçların veya yayaların potansiyel yollarını hesaba katmadığında kazaların kaçınılmaz 

olduğu anlamına gelir. Bu çalışmada, güvenlik risklerini en aza indirmek amacıyla hızlı ve 

etkili bir robotik davranışsal tahmin modülü geliştirilmiştir.  Otonom araç ile sürüş yapılarak 

veri toplanmıştır ve geliştirilen modül test edilmiştir. İlgili modül hali hazırdaki çalışılan 

otonomi projesine entegre edilmiştir. Önerilen metodun üç saniyeye kadar, belirli çevresel 

obje sayısında, başarılı ve hızlı bir şekilde çalıştığı görülmüştür. 

 
ANAHTAR KELİMELER: Davranışsal Tahminleme, Güzergah Tahminleme, Otonom 

Araçlar, Robot İşletim Sistemi 

 

 
Danışman: Dr. Öğr. Üyesi Çağatay Berke ERDAŞ, Başkent Üniversitesi, Bilgisayar 

Mühendisliği Bölümü.
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1. INTRODUCTION 

 
 

The function and importance of autonomous vehicles are increasing day by day. It is 

foreseen that autonomous vehicles will play an important role in the future in order to reduce 

the density of transportation and to eliminate human-induced accidents. Apart from 

transportation, autonomous vehicles are becoming more and more common in areas such as 

agriculture, health and education.  

Autonomous vehicles are inspired by living things; they consist of modules such as 

perception to detect the environment, localization to determine its own position, planning to 

where and how to go, control for its movement and behavioral prediction for possible 

movement routes of surrounding objects. Middleware such as Robotic Operating System 

(ROS)_[1], ZeroMQ (ZMQ)_[2] and Robotic Operating System 2 (ROS2)_[3] are needed 

for these modules to communicate with each other correctly and completely. These 

middlewares enable modules to transmit the desired message to the relevant module. Thanks 

to the ROS middleware tools that are used in the study, it also provides benefits such as 

visualizing, recording and observing data. 

1.1 Problem Definition 

In autonomous vehicles consisting of modules such as control, canbus, perception, 

localization, planning and behavioral prediction, it is extremely important to predict the 

future position of the objects around it with high performance for the vehicle to plan 

correctly. The module that predicts the possible routes of objects in the environment of 

autonomous vehicles is the behavioral prediction module. Thus, the behavioral prediction 

module is one of the most important factors for the accurate result of the planning module in 

autonomous vehicles. The behavioral prediction module generates output that predicts future 

positions by keeping the past positions of objects around the ego vehicle. This output creates 

an input to the planning module by combining the objects found by the detection module. 

An autonomous vehicle without a behavioral prediction module will consider all objects as 

static and plan accordingly, but in highway conditions or urban traffic scenarios, an accident 

will be inevitable if the possible routes of vehicles or pedestrians are not taken into account. 

To give an example from scenarios that are frequently experienced in daily life, in order for 

an autonomous vehicle to consider a pedestrian preparing to cross the street, the autonomous 

vehicle must know the pedestrian's possible route. Similarly, while the autonomous vehicle 

is changing lanes, it must calculate the possible route according to the speed of the vehicle 
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from behind, otherwise there will most likely be an accident. In this thesis, the problem of 

finding the possible routes of moving objects around the autonomous vehicle was focused 

on. 

1.2 Problem Solution 

 

 A behavioral prediction module has been developed to solve the problem specified in 

Section 1.1. The possible routes of the objects around the autonomous vehicle were 

estimated so that the planning module could draw a path by taking the possible routes of 

moving objects into account. Developing a fast and successful behavioral prediction module 

in order to prevent the mentioned risks will make significant contributions to both the 

literature and life. 

The developed behavioral prediction module is based on ROS and works in real-time. 

Features such as ROS middleware, dynamic history hold and release structure, direction 

error correction, covariance distribution visualization, and message type matching suitable 

for planning have been added to the multi modal Conditional Variational Auto Encoder 

based (CVAE-based) model_[4]. Thus, an end-to-end autonomy module structure was 

created that sends the possible routes of the surrounding vehicles to the planning module. 

1.3 Aims & Objectives 

With the behavioral prediction module to be obtained as a result of this thesis, the 

possibility of an autonomous vehicle making a mistake in the environment of moving objects 

will be significantly reduced. Apart from contributions such as writing real time inference to 

the current model, adding ROS infrastructure, and correcting or filtering erroneous data; the 

addition of Convolutional Long Short-term Memory (ConvLSTM) to a GNN-based model 

and the acceleration of this model by using TensorRT are the most important contributions 

of the thesis to the literature. 

1.4 Organization of the Thesis 

In the next part of the study, behavioral prediction approaches and studies in the 

literature review section will be summarized, then information about the methodology used 

in the study will be given and the developed module will be explained in detail in the material 

and methods section. Afterward, in the results section, the results obtained with the test data 

will be shared and in the findings section test results and behavioral prediction module will 

be discussed. Finally, the conclusion of the study will be expressed and deductions about the 

test results will be shared in the conclusion section.  
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 2. LITERATURE REVIEW 

 
 

2.1 Previous Literature 

In the literature, there is very little research in the field of behavioral prediction 

compared to areas such as perception, localization, and planning of autonomous vehicles. 

The biggest reason for this is that it is more difficult to determine the location of 

environmental factors in the future than the problems in other areas. When the trajectory 

prediction approaches are examined [5][6], although there are approaches such as 

representation, contextual factors, modeling, situational awareness, the modeling approach 

will be used as the main approach in categorizing the studies in this article. In addition, 

information will be provided in terms of representation, output and situational awareness 

types for the studies. When the studies are examined in terms of modeling methods; 

behavioral prediction methods are shown in Figure 2.1, they consist of physics-based, 

machine learning based, deep learning-based and reinforcement learning-based methods. 

 

 

 

 

Figure 2.1 Trajectory Prediction Methods 
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Physics-based methods take information from the dynamics and kinematics of the 

vehicle. They consist of single-trajectory, Kalman filter (KF) and Monte Carlo methods.  

Models using a single trajectory mostly use the kinematic information of the vehicle. 

Although there are also models that use the dynamic information of the vehicle, these models 

are more complex. Dynamic models consider all forces that govern motion. Dynamic models 

are highly complex due to the factors involved. For example, for a vehicle, the dynamic 

model considers the forces acting on the tires, the driver’s actions and their effects on the 

vehicle’s engine and transmission. For trajectory prediction, it does not make much sense to 

use a dynamic model to model such complex behavior unless you intend to run a control-

oriented application [7]. Kinematic models are more commonly used than dynamic models 

due to their simpler structure. One of the most commonly used is Constant Velocity (CV). 

A simple example of a kinematic model is the CV model used in [8]. The CV model assumes 

that the recent relative motion of an object determines its future trajectory. Similarly, 

Ammoun et al. [9] and Schubert et al. [10] estimated the possible trajectories of the vehicle 

using the Constant Acceleration (CA) method. The CA method estimates the future 

acceleration of the vehicle from the past acceleration data, these acceleration estimates are 

converted into position information and the possible position of the vehicle is found.  Lytrivis 

et al. [11] used Constant Turn Rate and Velocity (CTRL) and Constant Turn Rate & 

Acceleration (CTRA) models and Batz et al. [18] used Constant Steering Angle & Velocity 

(CSAV) and Constant Steering Angle & Acceleration (CSAA) models by adding wheel data 

to the model. 

The single trajectory methods given as an example [7]-[11] use non-noise data from 

the vehicle. In contrast, the Kalman Filtering method can handle the uncertainty of present 

vehicle conditions or noise such that the noise and its physical model are modeled by a 

Gaussian distribution. The prediction and adjustment phases are integrated within a 

continuous loop. The vehicle state mean and covariance matrices are determined at each 

future time step and computed as mean trajectories with associated uncertainties. In their 

work, Kempchen and colleagues [12] introduce an Interacting Multiple Model (IMM) for 

generating multiple possible trajectories. The Switched Kalman Filter (SKF) [13], on the 

other hand, relies on a series of Kalman filter techniques to model the vehicle's physical 

behavior and transition between these models. 

Apart from the Single Trajectory and Kalman filter method; there is the Monte Carlo 

approach, which can imitate state distributions approximately. It involves random testing of 
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input variables and utilizes a physical model to generate potential future trajectories. In their 

work, Okamot and colleagues [14] introduce a model based on maneuvers, employing Monte 

Carlo methods to anticipate future trajectories based on identified maneuvers. Similarly, 

Weng and their team [15] forecast trajectories using the Monte Carlo approach and optimize 

the reference trajectory using MPC. 

While the physics-based methods described above [7]-[15] kinematics and dynamics 

were used as inputs, road-related factors were also used as inputs in Coelingh et al. [16] and 

Xie et al. [17] studies. These studies mostly output unimodal trajectory. There are also 

studies that outputs multimodal trajectory or intention as in Hermes et al. [19]. 

Unlike physics-based methods, machine learning methods are based on the principle 

of obtaining predicted trajectories by data mining. On the other hand, learning-based models 

tend to capture and incorporate changes caused by long-term dependencies and external 

factors, compared to physics-based models that are limited to low-level motion 

characteristics and are poor at estimating long-term motion dependencies. The most widely 

used machine learning methods are Decision Tree, Hidden Markov Model (HMM), Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), Dynamic Bayesian Network (DBN) 

and Gaussian Process (GP) methods. 

When applying GP to predict a trajectory, the trajectory is considered as GP samples 

tested along the time axis. A sample is symbolized by N discrete points for mapping into N-

dimensional space. The samples then fill an N-proportional Gaussian distribution in N- 

proportional area. GP could also be applied to model interaction-related components, 

Trutman et al. [20] use GP to avoid joint collisions and solve frozen robot problems. GP and 

Dirichlet process (DP) are applied to determine the motion process, and a non-parametric 

Bayesian network is applied to extricate potential movement models by Guo et al. [21]. 

Kumar and colleagues [22] suggested that as Support Vector Machines (SVM) are 

capable of providing classification probability attributes, they proposed a multi-layer 

architectural approach that combines SVM with Bayesian filtering to recognize lane change 

maneuvers and get more error-free identification results. 

In real life, only visible states can be observed on vehicles, but we cannot intuitively 

express the hidden states. Hence, there is a requirement to create a Markov process that 

incorporates concealed states and identify the inherent state of an event through a collection 

of observable states associated with the likelihood of the concealed state. This concept is 
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known as the hidden Markov model (HMM). Building upon the HMM framework, Qioa and 

their team [23] introduce an algorithm called HMTP, which dynamically selects parameters 

to replicate real-world scenarios characterized by variable speeds. In [24], their HMM 

connection with fuzzy logic is applied to predict driver maneuvers. The author of [25] 

presents a DBN representing driver behavior and vehicle trajectory. DBNs have Markov 

properties. We can extend the state with more information to satisfy the Markov assumption. 

In [25], this is done by adding all relevant information about the process to the DBN in the 

form of a vector. 

Although the outputs of the studies in this method are mostly multimodal, it has been 

observed that the model's performance increases as the situational awareness states such as 

map-aware, scene-aware and interaction-aware increase.  

One of the situational awareness scenarios in the field of behavior prediction is "map 

aware," where an HdMap is provided as input to the model, annotated with roadways, lanes, 

traffic signs, and similar elements. HdMap, short for High-Definition Map, is a specialized 

type of digital map that provides highly detailed and accurate information about the road 

network, traffic infrastructure, and surrounding environment. "Scene-aware" involves 

incorporating the objects in the vicinity and areas on the map, such as intersections and road 

junctions, into the model together. On the other hand, "interaction-aware" entails including 

the interactions between objects in the environment in the model along with the map as input. 

Deep-learning based methods are based on the principle of obtaining a predicted 

trajectory as a result of the model obtained by performing various feature extraction and 

regression operations of the historical trajectory. Most of the studies in the field of trajectory 

prediction consist of deep learning-based approaches. There are more than a hundred studies 

based on deep learning. Only mainstream studies are considered in this study. 

Deep-learning based methods consist of sequential networks, graph neural network 

(GNN) and Generative Model methods. Sequential network methods consist of 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), RNN and CNN 

and Attention Mechanism, while Generative Model methods consist of Generative 

Adversarial Network and Conditional Variational Auto Encoder methods. 

One of the most popular studies with RNN & CNN is DESIRE [26], whose goal is to 

predict the future positions of multiple interacting agents in a dynamic (driving) scene. This 

takes into account the multimodal nature of future projections. For example, even in the same 
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situation, the future can be different. It can predict potential future outcomes and make 

strategic predictions based on them, making inferences based not only on past movement 

history but also on scene context and agent interactions. 

Another example of work with a sequential network is [27] the modified version of 

LSTM i.e. ST-LSTM (Spatio-temporal LSTM) is used in [27] where the interaction of 

multiple vehicles and its effect on the trajectory of Value of Information (VOI) is estimated.  

When the studies conducted with GNN are examined, Deal and colleagues [28] employ 

two widely recognized graph networks: Graph Convolutional Networks (GCN) and Graph 

Attention Networks (GAT) for predicting trajectories based on interaction-related elements 

and validate their effectiveness. To explain further, GCN's main concept revolves around 

learning a mapping function that can extract features recognizing interactions from a node's 

features within the figure and those of its neighboring nodes. On the other hand, GAT utilizes 

an attention mechanism to determine the weights between nodes when combining feature 

data. Another instance of Graph Neural Networks (GNN) is presented by Li and team [29] 

in their GRIP model, which utilizes both static and dynamic graph networks to forecast the 

trajectories of road users. Notably, in the latter part of 2019, GRIP achieved the top position 

in the Baidu Apolloscape dataset [30]. It's worth mentioning that previous iterations of GRIP 

employed the LSTM encoder/decoder, whereas the current version uses the GRU for both 

encoding and decoding. 

Another deep learning approach is the generative model approach. Trajectory 

prediction generative models include Generative Adversarial Networks (GANs) and 

Conditional Variational Autoencoders (CVAEs). Gupta and colleagues [31] employ a 

Generative Adversarial Network (GAN) known as SGAN for predicting pedestrian paths. 

The generator in SGAN utilizes an LSTM encoder, a pooling module, and an LSTM decoder 

to generate estimated trajectories, while the discriminator employs LSTMs to assess the 

quality of the predicted trajectories. On a related note, Sohn and their research team [32] 

introduce a method involving conditional Variational Autoencoder (CVAE) to address 

structured prediction tasks. When it comes to predicting trajectories, combining variations 

of CVAE and RNN in the roles of encoder and decoder proves to be an effective approach 

for trajectory generation. 
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Deep learning-based studies can provide more comprehensive output and input 

compared to physics and machine learning-based studies. These studies mostly take 

interaction-aware inputs and provide multimodal or intention type output. 

The reinforcement learning approach, which has been extensively studied in recent 

years, also appears in predicting trajectory. The reinforcement learning method is based on 

the decision-reward principle, focusing on finding the decision that will maximize the 

reward.  

The Reinforcement Learning method consists of Inverse Reinforcement 

Learning(IRL), Generative Adversarial Imitation Learning(GAIL) and Deep Inverse 

Reinforcement Learning(D-IRL) methods.  

Based on research using these methods; In Sun et al. [33] study, interaction related 

elements are taken into account to achieve probabilistic estimation for AVs by using IR. 

Future trajectory distribution is defined by driving manoeuvers. Kufler et al. [34] extended 

GAIL to their RNN optimization to show the behavior of a human driver, discriminators 

evaluate steps and actions. Choi et al. [35] combine the partially observable Markov decision 

process (POMDP) within the GAIL framework and propose a method to train the model 

using the discriminator reward function. The prediction problem is nonlinear, so nonlinear 

mapping should be used for generalizable function approximation. Wulfmeier et al. [36] 

propose a deep inverse reinforcement learning (DIRL) framework for approximating 

complex nonlinear reward functions. Some D-IRL approaches get history tracks as input. 

Considering driving characteristics and route shape, the researchers in reference [37] began 

by applying reinforcement learning (RL) to create a Markov Decision Process (MDP). They 

then acquired the best driving strategy through Inverse Reinforcement Learning (IRL) and 

employed a Deep Neural Network (DNN) to formulate a reward system. In a separate work, 

Jung and colleagues [38] introduced a convolutional Long Short-Term Memory (LSTM) 

approach to extract feature representations from their LIDAR and trajectory data, 

considering factors like inertia, the environment, and societal influences. These extracted 

features are combined with the resulting reward map to predict the traversability map. 

Reinforcement learning methods, similar to deep learning methods, can take extensive 

inputs such as road and scene related factors and provide comprehensive outputs in the form 

of unimodal and intention. 



9 

 

When Table 2.1 and Table 2.2 are examined, although physics-based and machine-

learning-based methods require low computational load, their accuracy notably decreases, 

especially after 2 seconds. Compared to these two methods, deep learning and 

reinforcement-based learning methods can predict longer time successfully, although they 

overlay more computation load. When deep learning and reinforcement-based methods are 

compared, it is seen that the deep learning-based method is more successful. 

 

2.2 Limitations of Previous Research 

Previous researches are basically based on model studies. Studies on the integration of 

models with planning, detection and localization modules are limited. The majority of 

models are concentrated on predicting either vehicle-only or pedestrian-only trajectories. In 

many research articles, comparisons and tests have been made on displacement metrics, but 

there is no information about the working speed of the algorithms. 

As seen in Table 2.2, some studies give multi trajectory and some single outputs. 

Integration of multi-trajectory output algorithms with planning algorithms is more complex. 

However, it is important to assign the correct cost values to the multi-trajectory outputs for 

the system to give accurate output. 

An open source, ROS structured, end to end, configurable, robust, multi-class 

behavioral prediction module could not be found. The most related work found [39] is one 

that predicts pedestrian-only trajectories with ROS. 
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Table 2.1 Comparison of the trajectory prediction RMSE results of models using various methods trained on 

NGSIM dataset under highway condition [5] 
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Table 2.2 Comparison of the trajectory prediction FDE, ADE and MR results of models using 

various methods trained in Argoverse data set under urban condition [5] 

 

 

 

Figure 2.2 Behavioral Prediction research areas [5] 
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2.3 Contributions of the Study 

In the thesis study, research has been conducted on the areas of behavioral prediction 

shown in Figure 2.2, as outlined below: 

• Efforts have been made to accelerate the model using TensorRT, aiming to achieve 

advanced algorithms as a result. 

• The developed module has been integrated with the planning module. 

• Data has been collected for testing the algorithm and benchmarking it against other 

datasets. 

• Robustness has been enhanced through the correction and filtering of data from the 

perception system. 

• The model has been enriched by feeding it with additional heading data, providing 

more information to the model. 
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3. MATERIALS & METHODS 

 
3.1 Datasets 

Data sets are required for training or testing deep learning, machine learning and 

reinforcement-based behavioral prediction models. These data sets may consist of sensor 

data such as LIDAR, camera, radar, GPS, IMU, map data such as HDmap, vector map and 

their annotations, as well as perception or localization layer output for higher-level autonomy 

studies such as behavioral prediction. The main ones are KITTI [62], nuScenes [63], 

Argoverse [64] and NGSIM [65] datasets.  

The model that is worked on in this thesis is trained on nuScenes dataset. NuScenes 

dataset is a large-scale autonomous driving dataset that has several distinct datasets such as 

nuPlan [66] for planning, nuScenes for perception, nuImages [67] for image level operations. 

For this purpose, 1,000 driving scenes were collected in Boston and Singapore, two cities 

known for heavy traffic and extremely challenging driving conditions. 20-second scenes are 

manually selected to depict a variety of interesting driving maneuvers, traffic situations, and 

unexpected behavior. The complexity of nuScenes encourages the development of methods 

that enable safe driving on urban roads with dozens of objects per scene. In addition, by 

collecting data on different continents, developers can work on generalizing computer vision 

algorithms for different locations, vegetation, vehicle types, road signs, weather conditions, 

left-hand and right-hand traffic. 

To assist common computer vision tasks, such as object detection and tracking, it is 

annotated 23 object classes with accurate 3D bounding boxes at 2Hz over the entire dataset. 

Additionally, it is annotated object-level features such as visibility, movement and pose. 

In March 2019, the full nuScenes was released dataset with all 1,000 scenes. The full 

dataset comprises approximately 1.4M camera images, 390k LIDAR sweeps, 1.4M RADAR 

sweeps and 1.4M object bounding boxes in 40k keyframes. However, new features (map 

layers, raw sensor data, etc.) are being added day by day. It is also organized the nuScenes 

3D detection challenge as part of the Workshop on Autonomous Driving at CVPR 2019. 

The nuScenes dataset leverages the KITTI dataset. nuScenes is the first large dataset 

to provide data from the entire autonomous vehicle sensor suite (6 cameras, 1 LIDAR, 5 

radars, GPS, IMU). Compared to KITTI, nuScenes contains seven times more object 

annotations. 
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In order for the study to be tested, a Rosbag was collected with sizes 19.2 GB and 17.8 

GB by 10- and 12-minute driving in the Mustafa Kemal district of Ankara/Turkey. As seen 

in Table 5.1 Rosbag data consists of the ego vehicle’s localization output and perception 

output obtained by sensor fusion which includes positions, orientations, speeds, sizes of 

adjacent objects, transform information, camera images and visualization markers which 

include bounding box markers. In detail ego vehicle’s localization output includes the ego 

vehicle’s position, orientation and speed, perception output includes positions, orientations, 

speeds, sizes of adjacent objects, transform information includes relative positions and 

orientations of global map, local map and sensors, visualization markers includes bounding 

box markers of vehicles, pedestrians and unknown objects. 

 

Dataset Type: Rosbag 

Size : 39 GB Duration: 13 min 

Data Data Description 

• Image Data • Image data from camera 

• Localization data • Position and orientation data from 

localization module 

• Camera Object Detections • Object detections from camera 

• Sensor fusion output • Object detections from perception 

module 

• Tf and Tf static • Static and dynamic transformations of 

sensors, local and global map 

• Lidar Data • Pointcloud data from Lidar 

• Visualization Markers • Visualization Markers for 3D 

Worldmodel 

 

Table 5.1 Collected Rosbag for testing 
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3.2 Evaluation Metrics 

Reliable and generic metrics are needed to measure the success of the studies. Some 

metrics that can be used to compare related works are given below: 

Root Mean Squared Error (RMSE): Root mean square error computes the square root 

of the mean squared forecast error. As shown in the equation (1) while ŷi stands for estimated 

value (m), yi indicates observed value and n represents the quantity of samples. 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 

 

  (1) 

Average displacement error (ADE): The mean separation between the forecasted 

trajectory and the actual path. In the formulas (2) given below, xi and yi stand for predicted 

trajectory for one second interval in meters at x and y axes respectively, xi
GT and yi

GT indicate 

observed trajectory for one second interval in meters at x and y axes respectively, and T is 

time in seconds. 

 

𝐴𝐷𝐸 =
1

𝑇
∑ √  (𝑥𝑖 − 𝑥𝑖

𝐺𝑇)2  +   ( 𝑦𝑖  −  𝑦𝑖
𝐺𝑇)2

𝑇

𝑡=1

 

 

 

  (2) 

Final displacement error (FDE): As shown in the equation (3) FDE represents the gap 

between the ultimate prediction outcomes and the actual observed position. In the equation 

(3) given below, xT and yT stand for predicted trajectory for one second interval in meters at 

x and y axes respectively, xT
GT and yT

GT indicate observed trajectory for one second interval 

in meters at x and y axes respectively, and T is time in seconds. 

 
FDE = √ (𝑥𝑇 − 𝑥𝑇

𝐺𝑇)
2

 +  ( 𝑦𝑇  − 𝑦𝑇
𝐺𝑇)

2
 

 

  (3) 
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Miss Rate (MR): Miss rate is the ratio of trajectories estimated outside 2 meters or 

more according to ground truth to all trajectory estimates. In the equation (4) given below, 

‘misses’ are the forecasted paths located more than 2 meters away from the ground truth, 

while 'hits' are the predicted paths found within a 2-meter proximity of the ground truth. 

 

 MR = 
𝑚𝑖𝑠𝑠𝑒𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
 

 

  (4) 

 

 

3.3 Robotic Middleware 
 

Robotics middleware refers to the intermediate software layer utilized within intricate 

control systems of robots. This kind of middleware is purposefully designed to manage the 

intricacies and diversity of both hardware and applications involved in robot control. Its role 

encompasses the seamless integration of emerging technologies, simplification of software 

architecture, concealing the intricacies of lower-level communication and sensor disparities, 

enhancement of software quality, reutilization of robot software infrastructure for various 

research endeavors, and reduction of production expenses. 

It can be likened to "software glue," streamlining the path for robot developers to 

concentrate on their specific focal areas. Among the array of available middleware options, 

ROS (Robot Operating System) emerged as the preferred choice due to its extensive presence 

in existing literature and its incorporation within the ongoing project. ROS represents a 

compilation of software frameworks tailored for the creation of robotics software across 

heterogeneous computing clusters. It offers standard services akin to those provided by an 

operating system, including hardware abstraction, control over low-level devices, 

implementation of frequently utilized functions, inter-process communication, and management 

of software packages. 

Among the array of available middleware options, ROS emerged as the preferred choice 

due to the following reasons; 

• It is prevalent middleware in the literature. 

• It provides bridge and communication between hardware and software 

• It has peer to peer structure, system consists of separate nodes which is called Rosnode, 
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• As it is tool-based, has useful tools for visualization, diagnostics, data recording, 

logging, data plotting, 

• It has a multi-lingual structure; Rosnodes can be written in C++, Python, MATLAB, 

Julia, Java etc. 

• Due to Rosnodes are in simple structures, it is easy to modify and adapt to other 

structures 

• ROS and its libraries are open source and expanding day by day. 

 

3.4 Model Architecture 
 

Trajectron++ has been used as the model in this thesis study for the following reasons;     

• It is in a multi-classification structure that can give a trajectory output according to both 

vehicle and pedestrian. 

• Compared to other datasets, the nuScenes dataset in which the model is trained is new 

and contains map data and interaction information of objects. 

• As mentioned in the literature review section, many studies are showing that graph-

structured recurrent models are more successful. However, the Trajectron++ model 

uses a CVAE in a graph structured neural network,  

• It provides both unimodal and intent output, so that more and more flexible information 

can be provided to the planning module, 

• It is an open-source model, 

• It is a scene-aware model that takes into account the map and the interactions of other 

nodes with each other. 

Trajectron++ is in a map and interaction-aware structure as shown in Figure 4.1. The model 

consists of a 2-part structure, encode and decode. In the encoding section, environmental objects 

such as vehicle pedestrians enter the LSTM first. Briefly, LSTM is a kind of recurrent neural 

network capable of learning long-term dependencies. In RNN output from the last step is fed as 

input in the current step. In general, RNNs have a vanishing gradient problem. The vanishing 
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gradient problem in RNNs refers to a challenge where the gradients (derivatives) used for 

updating the network's parameters during training become extremely small as they are 

propagated backward through time. This issue leads to the network's weights being updated 

very slowly, or not at all, which can result in poor convergence and slow learning. LSTM can 

overcome this problem with a forget gate, which is designed to pass information between 

memory cells to store the most important previous information. 

 

Figure 3.1 Trajectron++ model architecture 

Edge parts enter the attention mechanism in addition to LSTM. The attention 

mechanism looks at an input sequence and decides at each step which other parts of the 

sequence are important. Map data enters the CNN model. CNN is the extended version of 

artificial neural networks (ANN) which is predominantly used to extract the feature from the 

grid-like matrix dataset. CNN is a simple sequential architecture. The flight path history is used 

as input and is fed through a fully connected layer of fixed size. Convolutional layers are 

stacked and used to ensure temporal uniformity. Finally, the features of the last convolutional 

layer are combined and passed through a fully combined layer to generate all predicted 

locations simultaneously. 

After the CNN layer, the map data enters the dense layer. The dense Layer is a simple 

layer of neurons in which each neuron receives input from all the neurons of the previous layer. 
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Dense layers are the most commonly used layers in models. In the background, the dense layer 

performs matrix-vector multiplication. The values used in the matrix are actually parameters 

that can be trained and updated using backpropagation. The output produced by the dense layer 

is an 'm' dimensional vector. So basically, dense layers are used to change the dimension of the 

vector. Dense layers also apply operations such as rotation, scaling, and translation to vectors. 

Node history, edge history, map, robot future and node future information are entered 

into the decode section by concatenating and entering the dense layer. This information is 

decoded by going through the Gated Recurrent Unit (GRU), Gaussian Mixture Model (GMM) 

and Dynamic Integration stages, respectively. 

GRUs are very similar to LSTM. Just like LSTM, GRU uses gates to control the flow 

of information. Unlike LSTM, it does not have a separate cell state. It only has a hidden state. 

GRU (Gated Recurrent Unit) aims to solve the vanishing gradient problem associated with 

standard recurrent neural networks. To solve the vanishing gradient problem in standard RNNs, 

the GRU uses so-called update and reset gates. Basically, these are two vectors that determine 

what information is passed to the output. What makes them special is that they can be trained 

to retain information long ago without obscuring it over time or removing information 

irrelevant to the prediction. 

A GMM is a category of probabilistic models in which every data point generated is 

derived from a finite mixture of Gaussian distributions with no known parameters. Finally, 

dynamic integration means that the dynamic constraints of the vehicle or pedestrian are also 

taken into account. When some clusters may be ‘wider’ than others or clusters may overlap, 

GMM should be used. If one Gaussian model is used, it cannot handle the data set generated 

by multi-Gaussian models, so GMM is introduced -- use multi-Gaussian models and mix them 

into one with certain weights. 

Studies on this model; ROS middleware has been added, the data from the perception 

module has been adapted to the input data format in the model. In addition, a dynamic history 

hold/drop structure has been created, so the history of tracked objects is accumulated, and the 

untracked object is prevented from entering the model. Heading from point cloud data and 

heading from position data are handled correctly so the behavior prediction module gets the 

accurate headings of surrounding objects. 
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3.5 The Developed Software Methodology 

 

Due to the added ROS middleware, this software processes the incoming data from 

the perception subsystem, finds possible trajectories and sends them to the planning 

subsystem. In this way, the vehicle also considers the trajectories of its moving objects while 

planning. 

The developed behavioral prediction module is shown in Figure 3.1 as a flowchart and 

pseudo code. First, by listening to the output of the perception module, information such as 

the position, class and orientation of the surrounding objects is obtained, and then dictionaries 

are created for the object at a certain speed and attention radius. As long as the ROS 

connection is open, the object information from the perception output is accumulated in the 

relevant dictionaries. This dictionary sizes have been chosen as twelve timesteps due to the 

detection system operating at 10fps, the common usage of a 2-second history in the literature, 

and the consistent results obtained in the conducted tests. When the objects reach enough 

history, they are converted into a data structure suitable for the model and entered as input to 

the model. 6-second predicted trajectories are output from the model. This estimated trajectory 

information is converted into the message types for the planning module and visualization. 

These messages are published to relevant modules by ROS middleware. 

If the functions are examined in more detail, with the append history function, the 

heading, position and classification information of the tracked objects are passed by the 

distance and speed filters, and the history is appended in the related Python dictionaries. With 

the update history function, the untracked object is deleted from the dictionary and only 

vehicle and pedestrian type entries are entered into the model.  

     Heading data entered as input to the model is obtained from both the direction 

information coming from the segmentation output and the direction information found from 

the ego vehicle position. Although the segmentation output gives the right direction of the 

vehicle, due to errors emerging from lidar segmentation, it often reverses the direction by 180 

degrees. While heading from the position information, the heading value is incorrect, 

especially when the vehicle is maneuvering. If the heading value from the position 

information and the value from the segmentation is more than 90 degrees, the direction 

information from the segmentation is rotated 180 degrees, thus a more robust heading 

information structure is created. In addition, a velocity and attention radius filter has been 

created for the tracked objects, and objects that are far from the ego vehicle or at very low 
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speeds from the detection system do not enter the model so that the algorithm works more 

efficiently. The predicted trajectory information from the model was converted into a message 

type suitable for the planning module and visualized. A configuration file was created in order 

to easily understand and configure message types and Rostopics which is the name of Ros 

messages.  

Apart from Rostopics and message types, the behavioral prediction module can be 

configured with various parameters to operate efficiently under different conditions. These 

parameters include: 

• History time step: This parameter determines the number of past time steps to be 

retained. The perception system operates at 10 frames per second, and since a 2-

second history is commonly used in the literature, it has been set as 20 time steps. 

• Attention radius: It represents the distance of objects in the vicinity of the ego vehicle 

in meters. Due to the perception system's error rate being low in the vicinity of the 

vehicle, the vehicle's low speed (30 km/h), and it being deemed sufficient in 

conducted tests, an attention radius of 30 meters has been chosen. 

• Speed Threshold: This is the minimum speed required for environmental objects 

entering the model, measured in meters per second (m/s). A speed threshold of 1 m/s 

has been set to prevent very slow objects or erroneous speed data from entering the 

model. 

• Output Tag: This parameter specifies which model to use. Options include Base, 

Dynamic Integration, Dynamic Integration + Maps, Dynamic Integration + Maps + 

Robots Future. Due to the absence of vehicle dynamics and map information in the 

collected dataset, the base model has been used. 

• Predict Horizon: It defines the time length for prediction in seconds. Since it is 

commonly used in the literature and provides an adequate amount of time for 

planning, a 6-second duration has been chosen. 

These parameters allow for the customization and optimization of the Behavioral 

Prediction module to suit different scenarios and operational requirements. 
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   Figure 3.2 Flowchart of Behavioral prediction module 
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• Pseudo code of behavioral prediction module; 

subscribe perception output 

initialize history dictionary 

while ROS is UP 

 if object is in attention radius and has speed 

  Append object id, x, y, heading, yaw in dictionary 

 if object is in dictionary 

  Append object id, x, y, heading, yaw in dictionary 

 else 

  delete object dictionary 

 if object has 20 history timestep 

  filter heading data 

  convert history dictionary to model input 

  input object history to model 

 create trajectory message from model output 

 create visualization marker from model output 

 publish trajectory message 

 publish visualization message 
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4. RESULTS 

 
 

4.1 Performance Evaluation Results 
 

The trajectory prediction module was tested by replaying the Rosbag dataset on a laptop 

equipped with a T1000 graphics card, an i7 9th Gen. Processor, and 16 GB of RAM. The developed 

software was executed in a Docker and Conda virtual environment with CUDA 11.3 and PyTorch. 

The collected Rosbag data was analyzed separately for highway conditions (Sabancı 

Boulevard) and inner-city conditions (Mustafa Kemal District). The urban segment covers the time 

interval from the first to the eighth minute of the Rosbag, while the highway segment spans from the 

eighth to the thirteenth minute. Trajectory predictions were generated and visualized using green 

sphere markers by executing the trajectory prediction ROS module on the Rosbag data. 

As depicted in Figures 4.1, 4.2, and 4.3, during urban driving, the vehicle frequently 

encountered densely populated environments. In these figures, images captured by the vehicle's top-

mounted camera are displayed on the right side, while the outputs of the behavioral prediction 

module have been juxtaposed with the perception and localization module outputs of the vehicle on 

the left side. 

When the figures from dense environments were inspected, although the speed and attention 

radius filter was added, incorrect speed information from the perception layer for the standing 

vehicles caused the algorithm to work slowly in a dense environment. Sudden changes in the 

direction of vehicles and pedestrians in dense areas are a factor that reduces the performance of the 

behavior prediction module. 

In Figure 4.1, the route prediction of the vehicles around the autonomous vehicle was made 

when approaching the intersection in the Mustafa Kemal district. As can be seen in the world model 

on the left side, due to the filter used, while there is no prediction for stopping vehicles, trajectory 

prediction estimates of vehicles turning at the intersection have been made. 
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Figure 4.1 Visualization of dense environment trajectory prediction-1  

 

In Figure 4.2, route estimates of pedestrians crossing the street were made. Pedestrians 

are also difficult to track because they are small in size compared to vehicles. For this reason, 

the possible route of only one of the pedestrians crossing the street could be estimated. 
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Figure 4.2 Visualization of dense environment trajectory prediction-2 

 

 

In Figure 4.3, route estimates of the vehicle on the left side and the vehicle coming from the 

opposite lane were made. As the vehicle approaches the intersection, the route prediction of the 

turning vehicles in the opposite lane, the vehicles in the back cross and the vehicle in front are made 

in Figure 4.4. 
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Figure 4.3 Visualization of dense environment trajectory prediction-3 

 

 

Figure 4.4 Visualization of dense environment trajectory prediction-4 
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In Figures 4.5 and 4.6, while the vehicle was being driven at a speed of about 50 km/h on 

Sabancı Boulevard, the route estimation of multiple vehicles displayed on the left side was made. 

The estimated routes are quite close to the actual routes of the vehicles. 

 

Figure 4.5 Visualization of multi vehicle trajectory prediction-1 
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Figure 4.6 Visualization of multi vehicle trajectory prediction-2 

 

 

Rosbag's highway condition driving between 8 min and 13 min has achieved better results 

compared to the urban section. Approximately 5 km of driving has been done under highway 

conditions. Nine vehicles have been tracked by perception without error. Behavioral estimation 

of nine vehicles in highway condition from Figure 4.7 to 4.15, respectively, was performed. The 

green dots on the figures indicate the possible routes of the vehicles. In addition, as seen in Figures 

4.5 and 4.6, the trajectory predictions of two or three vehicles have been made at the same time 

without loss of performance.  
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Figure 4.7 Visualization of vehicle-1 trajectory prediction 

 

Figure 4.8 Visualization of vehicle-2 trajectory prediction 
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Figure 4.9 Visualization of vehicle-3 trajectory prediction 

 

In Figure 4.7, the autonomous vehicle was tracked while leaving the main road to Sabancı 

Boulevard and route prediction was made. In Figure 4.8 and Figure 4.9, the route prediction of 

vehicles leaving the left lane has been successfully performed. In Figure 4.10 and Figure 4.11, the 

behavior prediction output of larger commercial vehicles compared to passenger cars was visualized. 

In Figure 4.15, the behavior prediction output of a pickup truck is visualized. 
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Figure 4.10 Visualization of vehicle-4 trajectory prediction 

 

 

Figure 4.11 Visualization of vehicle-5 trajectory prediction 
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Figure 4.12 Visualization of vehicle-6 trajectory prediction 

 

 

Figure 4.13 Visualization of vehicle-7 trajectory prediction 
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Figure 4.14 Visualization of vehicle-8 trajectory prediction 

 

 

 

Figure 4.15 Visualization of vehicle-9 trajectory prediction 

 

 



35 

The outcomes of the Trajectron++ model are presented in Table 4.1. The model underwent 

testing on the test dataset of the nuScenes dataset on which it was trained. As outlined in the table, 

according to these results, the FDE for vehicles is 0.42 meters in the first second, and it increases to 

2.48 meters by the fourth second. 

 In the Trajectron++ paper [4], the authors assert, based on their experience, that the error of 

the detection system in the nuScenes dataset ranges from 22 to 24 cm and subtracts this error margin 

from their own results. In Table 4.1, since the Rosbag dataset results encompass the detection system 

error, 24 cm has been incorporated into the nuScenes dataset results. Upon comparing these results 

with those derived from Rosbag testing, it becomes apparent that the disparity, approximately 0.5 

meters at the first second, intensifies with each subsequent second, ultimately reaching 2.5 meters 

by the fourth second. 

 

  Table 4.1 FDE(2) results of Trajectron++ model on nuScenes and Rosbag Dataset 

 

Methods FDE(m) 

Vehicle-only 

nuScenes Rosbag Dataset (Our Dataset) 

1s 2s 3s 4s 1s 2s 3s 4s 

Trajectron++ 0.42 0.81 1.49 2.48 0.92  1.87 3.70 4.85 

Trajectron++ +∫, M 0.07 0.69 1.38 2.44 - - - - 

Legend: ∫ = Considering Dynamics , M = Map Encoding 

 

 The average RMSE of these nine vehicles and the RMSE of five vehicles of 5 seconds are 

given in Table 4.2. The longer the estimation period, the greater the amount of error. Similar to the 

urban roads section, although the incorrect perception output or the inability of the perception 

module to track the surrounding vehicle is a factor that reduces my performance, erroneous data has 

not been received from the perception module very often. One of the reasons for incorrect data 

coming from the perception module is incorrect data coming from GPS and IMU. However, since 

the data was collected at an off-peak time of the day, there was a few erroneous data. 
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Table 4.2 RMSE (1) results of tested Rosbag 

 

Objects RMSE(m) 

1s 2s 3s 4s 5s 

Vehicle1 0.87 2.13 4.14 5.68 7.25 

Vehicle2 0.92 2.09 4.28 5.82 6.43 

Vehicle3 0.70 1.90 3.91 5.11 6.12 

Vehicle4 1.20 2.42 4.72 6.23 8.04 

Vehicle5 0.78 1.75 3.78 5.02 6.10 

Vehicle6 1.45 2.10 3.99 4.97 7.05 

Vehicle7 0.75 2.78 3.41 6.01 7.73 

Vehicle8 1.28 2.35 4.66 5.28 6.87 

Vehicle9 1.12 1.99 4.03 6.36 8.80 

Overall  1.07 2.17 4.10 5.61 7.15 

 

 

Table 4.3 displays the FDE, ADE, and MR outcomes for the nine vehicles that were accurately 

tracked by the detection module over a 5-second interval. It was determined that the average FDE 

result is approximately 7 meters, the average ADE result is 4 meters, and the average MR result is 

70 percent. 
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Table 4.3 FDE (2), ADE (3) and MR (4) results of tested Rosbag 

 

Objects  FDE(m) ADE(m) MR(m) 

Vehicle1 8.52 5.78 0.75 

Vehicle2 9.12 6.89 0.85 

Vehicle3 7.88 4.45 0.77 

Vehicle4 6.56 3.24 0.62 

Vehicle5 5.14 3.15 0.62 

Vehicle6 5.82 2.01 0.76 

Vehicle7 6.11 4.46 0.64 

Vehicle8 7.15 5.14 0.70 

Vehicle9 4.77 2.03 0.68 

overall 6.78 4.12 0.71 

 

4.2 Findings 
 

Throughout the tests, when a single vehicle or pedestrian is present within the environment, 

the module operates at 6 fps. As environmental factors increase, the module's operating frequency 

inversely decreases relative to the number of factors. Specifically, the system operates at 6 fps with 

one environmental object and 3 fps with four environmental objects. Under the condition that the 

vehicle is moving at a maximum speed of 30 km/h, and considering that other autonomy modules 

such as planning and perception can operate smoothly at 5 fps, as well as taking into account the 

more powerful processor of the onboard computer, it is anticipated that the system will function 

without speed issues in environments containing up to four objects. In order not to reduce the 

performance, model parallelization methods such as converting TensorRT can be used. However, 

the TensorRT library does not yet support the conversion of some modules of the Trajectron++ 

model, such as GRU and GMM.  

The inclusion of an attention radius and a speed filter prevented distant, stationary, or very 

slow objects from entering the model, leading to improved model efficiency. 

The discrepancy between the results presented in Table 4.1 of the Trajectron++ paper and 

the outcomes from Rosbag testing arises from multiple factors. These factors encompass the 

nuScenes dataset being collected in a more organized traffic setting compared to the collected 
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Rosbag data, the higher error rate of the detection system within the Rosbag data, and the greater 

velocities of tracked vehicles in the Rosbag data. 

Considering that the distance between the two lines is 3 m for side roads and 3.50 m for main 

roads, and taking into account that lane changes typically occur over 2-4 seconds, the results for 

highway vehicles provided in Table 4.2 suggest that vehicles up to two seconds exhibit an acceptable 

level of RMSE. 

 RMSE can be reduced by getting more accurate data from the perception layer. Speed and 

heading information, which is one of the data from the perception layer, comes to the perception 

layer from the localization layer and it comes to the localization layer from GPS and IMU sensors. 

Therefore, accurate data should be received from GPS and IMU sensors for the successful 

performance of the behavior prediction module; otherwise, incorrect results will emerge from the 

speed and heading data entered as input to the model. However, the results in Table 4.3 also support 

the results in Table 4.2. According to Table 4.3 results, it has been observed that the algorithm is 

prone to error in real life during long prediction times. 

During drives in urban conditions, as depicted in the dense environment from Figure 4.1 to 

4.4, inputs are simultaneously fed into the model, thereby reducing the model's operational speed. 

However, the fact that the route that both pedestrians and vehicles will take is more uncertain than 

highway roads is one of the negative factors affecting this structure in urban use. Similar to highway 

roads, speed and heading information from GPS and IMU are also important in urban areas. Even in 

the city, since the speeds of vehicles are lower, errors in speeds affect the system more. Although the 

slow speed makes it difficult to find the heading data correctly, more accurate heading data can be 

obtained thanks to the added binary heading data structure. In order for the behavior prediction 

module to be used in the city, the environment must be controlled and run on more advanced 

computers. Controlled environment refers to the environments in which the algorithm is fed with 

HDMap, traffic rules, traffic signs, node interactions and objects move within the framework of these 

rules. 

In the field of behavioral prediction, as it can be understood from the related work section, 

many models have been studied and continue to be studied. Although the studied models generally 

give successful results for the test sets of their own datasets, their speed and performance decrease 

in dense environments such as urban areas. Successful results can be obtained by creating more 

complex datasets and developing better model architectures. However, especially since pedestrians 

can change direction suddenly, people even in real life have difficulty predicting the possible 
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movement of pedestrians and vehicles. Therefore, the behavior prediction problem is a difficult 

problem for robots as well as for living beings. Especially as the estimated time gets longer, the 

results are moving away from availability. In order for the behavior prediction module to be used in 

public, the environment must be controlled, that is, the map must be used, and the surrounding 

vehicles and pedestrians must act in accordance with the traffic rules and the map.  

From a broader perspective apart from transportation vehicles, this software can be used in 

any autonomous ground vehicle such as health care robots, agricultural robots, shuttle services etc. 

and it increases the accuracy of planning module. In the future, it is planned to add ConvLSTM to 

the model to increase accuracy and accelerate this model using TensorRT. 
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5. CONCLUSION 
 

 Since the possible routes of environmental objects will be taken into consideration, with the 

behavioral prediction module obtained as a result of this study, the ratio of an autonomous vehicle 

making a mistake in the environment of moving objects can be significantly reduced. An end-to-end, 

real-time and robust behavioral prediction structure has been established from the detection module 

to the planning module, with contributions such as writing real-time inference to the current model, 

passing it to the ROS infrastructure and correcting or filtering faulty data.  

  Once for all, when the literature is examined, although there are autonomy modules such as 

open-source localization planning perception, there is no multi-model real-time behavior prediction 

module working with ROS. However, Trajectron++ is used as the model; also, there is no open-

source study for end-to-end integration of a model into an autonomous vehicle. The study is 

innovative in these aspects. The module works more efficiently and robustly due to the added history 

hold/drop structure and data filtering and correction features. In order to test the developed module, 

data were collected by traveling both in the city and on the highway conditions with an autonomous 

vehicle. The developed module has been tested on the data collected by an autonomous vehicle, and 

RMSE, FDE, ADE and MR results are calculated and shown. 

             In this study, trajectory prediction methods were examined, compared with each other, and 

as a result of these comparisons, graph-structured structures were seen to be more successful. 

Afterwards, the data was collected and the content of the data was explained. The developed software 

is explained, tested and the results are expressed. 
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