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Abstract

In this paper, we find the higher-order expansion parameters α and λ of spherically symmetric parameterized
Rezzolla–Zhidenko (PRZ) spacetime by using its functions of the radial coordinate. We subject the parameters of
this spacetime to classical tests, including weak gravitational field effects in the solar system, observations of the
S2 star that is located in the star cluster close to the Sgr Aå, and of the frequencies of selected microquasars. Based
on this spherically symmetric spacetime, we perform the analytic calculations for solar system effects such as
perihelion shift, light deflection, and gravitational time delay to determine limits on the parameters by using
observational data. We restrict our attention to the limits on the two higher-order expansion parameters α and λ
that survive at the horizon or near the horizon of spherically symmetric metrics. The properties of the expansion of
these two small parameters in PRZ parameterization are discussed. We further apply Markov Chain Monte Carlo
simulations to analyze and obtain the limits on the expansion parameters by using observations of the phenomena
of the S2 star. Finally, we consider the epicyclic motions and derive analytic expressions of the epicyclic
frequencies. Applying these expressions to the quasiperiodic oscillations of selected microquasars allows us to set
further limits on the parameters of the PRZ spacetime. Our results demonstrate that the higher-order expansion
parameters can be given in the range α, λ= (−0.09, 0.09) and of order ∼10−2 as a consequence of three different
tests and observations.

Unified Astronomy Thesaurus concepts: Black holes (162); X-ray binary stars (1811)

1. Introduction

General relativity (GR), formulated by Albert Einstein in
1915, introduced a new concept of space and time by showing
that massive objects cause a distortion in spacetime that is felt
as gravity (Einstein 1916). In this way, Einstein’s theory
predicts, for example, that light travels in curved paths near
massive objects, and one consequence is the observation of the
Einstein Cross. The Einstein Cross are four different images of
a distant galaxy that lies behind a nearer massive object, and
whose light is distorted by it. Other well-known effects of GR
are the observed gradual change in Mercury’s orbit due to
spacetime curvature around the massive Sun, or the gravita-
tional redshift, which is the displacement to the red of lines in
the spectrum of the Sun due to its gravitational field.

So far, all gravitational field effects in the solar system (SS)
in the weak-field approximation and in binary systems are
well described by means of GR (Will 1993; Will 2001).
V. Kagramanova et al. (Kagramanova et al. 2006) studied SS

effects in Schwarzschild–de Sitter spacetime. Based on this
spacetime, they calculated SS effects such as gravitational
redshift, light deflection, gravitational time delay, perihelion
shift, geodetic or de Sitter precession, and the influence of the
cosmological parameter Λ on Doppler measurements that were
used to determine the velocity of the Pioneer 10 and 11
spacecraft. Grumiller later constructed an effective model for
the gravity of a central object at large scales (Grumiller 2010).
To leading order in the large-radius expansion, he found a
cosmological constant, called Rindler acceleration, which sets
the physical scales and subleading terms. In the past decades,
hundreds of experiments and observations have been
performed to confirm Einsteinʼs theory. Some of these
experiments and observations are entirely new tests, probing
aspects of gravity that Einstein himself had never conceived of.
One of the first exciting validations of GR was the observation
of the binary system PSR B1913+16, where it was observed
that the orbits of the two stars were shrinking (Hulse &
Taylor 1974, 1975). This shrinkage is caused by the loss of
orbital energy due to gravitational radiation, which is a
traveling ripple in spacetime that is predicted by Einstein’s
GR theory, but was never previously verified. Very recently,
we have witnessed numerous gravitational wave observations
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by the LIGO-Virgo instruments (Abbott et al. 2016), the study
of stars orbiting the supermassive black hole at the center of the
Milky Way (Ghez et al. 1998), and the stunning image of the
black hole shadow in the galaxy M87 (Akiyama et al.
2019a, 2019b). In this vast and diverse array of measurements,
we did not find a single deviation from the predictions of GR.
The string of successes of GR experimentally and observa-
tionally is rather astounding. After more than 100 yr, it seems
that Einstein is still right.

Will this perfect record hold up? We do know, for example,
that the expansion of the Universe is speeding up, not slowing
down, as recent observations predict (Di Valentino et al. 2021).
Will this require a radical new theory of gravity, or can we
make do with a very slight tweak of GR? As we make better
observations of black holes, neutron stars, and gravitational
waves, will the theory still pass the test?

Both dark matter and dark energy in the observable Universe
have given rise to new alternative theories of gravity because
the classical Einstein GR is not sufficient to explain these
observations (Rubin et al. 1980; Wetterich 1988; Persic et al.
1996; Kiselev 2003; Peebles & Ratra 2003; Spergel et al. 2007;
Caldwell & Kamionkowski 2009; Akiyama et al. 2019a,
2019b). These modified theories of gravity have provided very
potent tests of probing new exact solutions for gravitational
objects (Hellerman et al. 2001; Kiselev 2003; Peebles &
Ratra 2003). Thus, it turns out that it is very crucial to
parameterize the solutions of gravitational field equations. In
this framework, a new parametric framework able to mimic
spacetime geometry of generic static spherically symmetric
black holes was proposed in Rezzolla & Zhidenko (2014). The
peculiarity of this approach is that an expansion of continuous
fractions is used by compacting the radial coordinate, which
allows a fast convergence. Recently, the Rezzolla–Zhidenko
(PRZ) spacetime has been studied as a model of a black hole
undergoing spherical accretion of matter and dust (Yang et al.
2021) and as a model of the Galactic center S-stars and distinct
pulsars through test-particle dynamics (De Laurentis et al.
2018). The PRZ spacetime can also be regarded as a model of
the quasiperiodic oscillations observed in microquasars, with
the low-mass X-ray binary systems consisting of either a black
hole or a neutron star and of X-ray data from compact
objects (Bambi 2012; Bambi et al. 2016; Tripathi et al. 2019).
These models would play an important role in testing
remarkable aspects of PRZ spacetime and in constraining the
magnitude of its expansion parameters. Generally, the observed
quasiperiodic oscillations (QPOs) in Galactic microquasars are
determined by the ratio 3:2 (Kluzniak & Abramowicz 2001),
which are either referred to as high-frequency (HF) or low-
frequency (LF) QPOs with the X-ray power. The HF QPOs are
usually referred to as twin-peak HF QPOs and provide valuable
information on infalling matter in the environment surrounding
the compact object. Note that the latter can be changed in
frequency as compared to the HF QPOs, which do not tend to
drift in frequency (Tasheva & Stefanov 2019). Recent
astrophysical observations suggest that LF and HF QPOs arise
in separate parts of an accretion disk (Titarchuk &
Shaposhnikov 2005; Stuchlik et al. 2007; Aliev et al. 2013;
Dokuchaev & Eroshenko 2015; Kološ et al. 2015;
Germanà 2018; Azreg-Aïnou et al. 2020; Ghasemi-Nodehi
et al. 2020; Jusufi et al. 2021; Rayimbaev et al. 2021, 2022;
Tarnopolski & Marchenko 2021), but both would be created
together in some X-ray binary systems. Different models also

explain the appearance of HF QPOs in accretion disks (Stella
et al. 1999; Rezzolla et al. 2003; Török et al. 2005; Pánis et al.
2019; Shaymatov et al. 2020; Tursunov et al. 2020).
In order to test and compare the properties of the extended

gravity theories, one may use a parameterization that would be
able to mimic various gravity theories through an expansion of
the metric functions in infinitely small dimensionless para-
meters. A first astrophysically interesting perturbative approach
based on a perturbations on M/r as deviations of the Kerr
metric was developed in Johannsen & Psaltis (2011) and
Glampedakis et al. (2017). A new parameterization as an
expansion in small dimensionless distance from the event
horizon was developed for a spherically symmetric PRZ
metric (Rezzolla & Zhidenko 2014) and was later extended for
an axially symmetric metric by Konoplya–Rezzolla–Zhidenko
(KRZ; Konoplya et al. 2016).
In this paper, the main idea is to constrain the first two

expansion parameters of the PRZ parameterization with the
help of the classical SS tests, the data of the S2 star orbiting the
Sgr Aå, and the observed frequencies of the QPOs for the
selected microquasars. By comparing the theoretical results
with observations in the SS, the S2 star, and astrophysical
quasiperiodic oscillations observed in GRO J1655-40 and XTE
J1550-564 microquasars, we can provide the magnitude of
these parameter constraints. Our investigation gives rise to the
fact that the constraints provide much information to reveal the
properties of this spacetime near the horizon, and they can be
regarded as a powerful tool in the direction of mimicking the
spherically symmetric and slowly rotating black holes.
The outline of the paper is as follows. In Section 2 we study the

geodesics of time-like test particles in the background determined
by the spherically symmetric PRZ spacetime (Rezzolla &
Zhidenko 2014). In Section 3.1 we study and derive the
expression for the perihelion shift with the aim to obtain the
constraints on the first two expansion parameters by comparing
observational data. Sections 3.2 and 3.3 are devoted to discussing
light bending and gravitational time delay. In Section 4 we discuss
constraints on the expansion parameters of spherically symmetric
PRZ spacetime via the S2 star orbit data. We further study the
epicyclic motions and aim to constrain the expansion parameters
by applying them to the QPOs observed in microquasars in
Section 5. The concluding remarks are given in Section 6.
We use a system of units in this paper in which GN= ÿ= c= 1

(however, for expressions with an astrophysical application, we
have written the speed of light and Newtonian gravitational
constant explicitly), and is a spacetime signature (−, + , + , + ).

2. Spherically Symmetric PRZ Spacetime

The line element describing any spherically symmetric
spacetime in the Schwarzschild coordinates (t, r, θ, f) is given
by Rezzolla & Zhidenko (2014),

( ) ( ) ( )

( ) ( )
( )

( )

ds g r dt g r dr g r d

N r dt
B r

N r
dr r d , 1

tt rr
2 2 2 2

2 2
2

2
2 2 2

=- + + W

=- + + W

qq

where d d dsin2 2 2 2q q fW º + , and N and B are functions of
the radial coordinate r only with

( ) ( )N r 0. 20 =

Note here that we omit any cosmological effect for the line
element in Equation (1) to be an asymptotically flat spacetime
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from its asymptotic properties. Following PRZ (Rezzolla &
Zhidenko 2014), we introduce the following dimensionless
variable for the radial coordinate:

( )x
r

r
1 , 30º -

where x= 0 and x= 1 correspond to the location of the event
horizon r= r0 and to spatial infinity r=∞, respectively .
Taking into account the above dimensionless variable, we can
rewrite the function N as follows:

( ) ( )N xA x , 42 =

with A(x)> 0 for 0� x� 1. Let us then write the functions A
and B in terms of three additional parameters, ò, a0, and b0, i.e.,

( )

( ) ( ) ( )( ) ˜ ( )( )
( ) ( ) ˜( )( )

5

A x x a x A x x

B x b x B x x

1 1 1 1 ,

1 1 1 ,
0

2 3

0
2

= - - + - - + -
= + - + -

 

with the functions ˜ ( )A x and ˜( )B x ,

˜ ( ) ( )A x
a

1
, 6a x

1

1 a x
2

3
1

=
+

+
+¼

˜( ) ( )B x
b

1
, 7

b x
1

1 b x
2

3
1

=
+

+
+¼

which are proposed to introduce the spacetime at the horizon,
x; 0, and at the spatial infinity, x; 1. Note that a1, a2, a3K
and b1, b2, b3K are the dimensionless constants in the above
equations. It is possible for these constants to be constrained on
the basis of astronomical observations near the event horizon.
Furthermore, we obtain the constraints on the first two
expansion parameters by using observational data. From the
properties of expansions (6) and (7), the first two terms at the
horizon can be written as

˜ ( ) ˜( ) ( )A a B b0 , 0 . 81 1= =

Therefore, the lowest-order terms would have primary
importance near the horizon. Here, we introduce the new
additional parameters α and λ to describe only the lowest-order
terms up to a1 and b1 near the horizon, so that the functions
˜ ( )A x and ˜( )B x can be expressed as follows:

( ) ( )( ) ( )
( )( ) ( ) ( )

xA x x a x

a a x a x

1 1 1 1

1 1 , 9
0

2

1 0
3

1
4

= - + - + -
+ - + - - -




( )
( )

( )( )

( ( ) )( ) ( )

B x

N x
b x

b b a x

1 1 2 1

2 2 1 1 . 10

2

2 0

1 0 0
2

= + + + -

+ + + - -





2.1. PPN Formalism

An interesting advantage of the PPN formalism is that it
constrains many theories of gravity. Here, we can specifically
add the new parameters along with the PPN asymptotic

behavior by representing B and N as

( ) ( )

( ) ( ) ( )

( ) (( ) ) ( )

N
M

r

M

r

M

r
r

M

r
x

M

r
x

M

r
x x

1
2 2 2

1
2

1
2

1

2
1 1 , 11

2
2

2

3

3
4

0

2

0
2

2

3

0
3

3 4

b g a

b g

a

= - + - + +

= - - + - -

+ - + -

-



( )

( ) ( ) (( ) )

( )

B

N

M

r

M

r
r

M

r
x

M

r
x x

1
2 2

1
2

1
2

1 1 ,

12

2

2

2

2
2

0

2

0
2

2 3

g l

g l

= + + +

= + - + - + -

-



where M is the Arnowitt–Deser–Misner (ADM) mass of the
spacetime parameters, β and γ are the PPN parameters, which
are observationally constrained to be (Will 2006)

∣ ∣ ∣ ∣ ( ) 1 2.3 10 , 1 2.3 10 , 134 5b g- ´ - ´- -

while α and λ are new dimensionless parameters related to the
new coefficients a1 and b1, respectively.
We have expanded the metric function N(r) to (( ) )x1 4- ,

but kept B2(r)/N2(r) to (( ) )x1 3- as the highest-order
constraint on N(r) and B2(r)/N2(r) that allowed us to find the
parameters α and λ. So that the parameter α sets constraint on
N(r) to third order, while λ sets a constraint on B2(r)/N2(r) to
second order in (1− x). By comparing the two asymptotic
expansions (9)–(10) and (11)–(12), and collecting terms at the
same order, we find that

( )M

r
1

2
, 14

0
+ =

( ) ( )a
M

r

2
, 150

2

0
2

b g= -

( )b
M

r
1 2

2
, 160

0
g+ + =

( )a a
M

r

2
, 171 0

3

0
3

a+ - =

( ) ( )b b a
M

r
2 2 1

2
. 181 0 0

2

0
2

l+ + - =

Hence, the introduced dimensionless constant ò is completely
fixed by the horizon radius r0 and the ADM mass M as

( )M r

r

M

r

2
1

2
, 190

0 0
=

-
= - -⎜ ⎟

⎛
⎝

⎞
⎠



and thus, it measures the deviations of r0 from 2M. On the other
hand, the coefficients a0, b0, a1, and b1 can be seen as
combinations of the PPN parameters and the new parameters λ
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and α as

( )( )

( )( )

( ) ( )

( ) ( ) ( )

a

b

a

b

1

2
,

1 1

2
,

1

2

1

2
,

2
2 1

2

1

2
, 20

0

2

0

1

2

1

2

b g

g

b g
a

l
g

b g

=
- +

=
- +

= - +
+ +

-

= - - +
- +

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦





  



alternatively, as

[ ( )]
( )

( )a b
1

2 1

1
, 210 0

2
b = +

+ +
+




( )b
1

2

1
. 220g = +

+ 

Hereafter, we study the motion of test particles in the PRZ
spacetime of Equation (1) so as to determine constraints of the
parameters with the help of SS effects. Note that the PRZ black
hole spacetime, being static and spherically symmetric, admits
two Killing vectors, i.e., ( )( ) ttx = ¶ ¶m m and ( )( )x f= ¶ ¶f

m m,
which are referred to as stationary and an axisymmetry. Hence,
there exist two conserved quantities, i.e., the energy E and the
angular momentum l of the massive particle. Following these
two Killing vectors, one can write the generalized momenta as
follows:

( ) ( )( ) E g u N r t, 23t
2x- = = -mn

m n

( )
( )

( )( )
l g u

B r

N r
, 24

2

2
x f= =mn

m
f
n

where u dx

d
=m

t

m
refers to the four-velocity of the massive

particle with the coordinate four-vector xμ, and the dot denotes
the derivative with respect to the proper time τ of a massive
particle. Solving the above equations would give the equations
of motion for a massive particle. Note that we furthermore
restrict the motion to the equatorial plane, i.e., θ= π/2. The
equation of motion of the massive particle can then be written
as

( )
( )
( )

( ) t
E

N r

N r

B r
land , 25

2

2

2
f= =

with the one given in terms of the effective potential as

( )r
V E

2
, 26

2
eff 2+ =

where we defined that E= E/m and l= l/m are conserved
quantitites. Taking all together, the effective potential for time-
like massive particles reads

( )

( )

( ) ( )

V
M

r

M

r

l

r
M

r

M

r

M

r

2
2

1
2

2
2

4 4 2 2 2 . 27

eff
2

2

2

2

2
2

2

2
3

3

b g

g l g

b bg g l a

=- - - - +

´ - - -

- - + + - -

⎡
⎣⎢

⎤
⎦⎥

For light-like test particles, the effective potential simplifies to

( ) ( )

( )

( ) ( )

V
M

r

M

r
l

r

M

r

M

r

M

r

1 2 2

2
1

2
2

2

4 4 2 2 2 . 28

eff 2
2

2

2

2
2

2

2

2
3

3

g b g l g

g l g

b bg g l a

=- - - - - - +

+ - - -

- - + + - -

⎡
⎣⎢

⎤
⎦⎥

The first term of expression (27) is the Newton potential, whereas
the second and third terms correspond to the centrifugal barrier and
relativistic correction relevant to the parameters of spherically
symmetric PRZ spacetime (Rezzolla & Zhidenko 2014). The
effective potentials are essential for the SS effects in order to find
constraints on the parameters from observational data.

3. Limits on the Parameters of the PRZ Spacetime via SS
Tests

3.1. Perihelion Shift

In this subsection, we aim to derive the analytic form of the
perihelion shift in the case of low eccentricity and small
expansion parameters (Wald 1984). Particles will oscillate
harmonically around some stable circular orbit at radius r= r+
with a frequency that is given by

( )

( )

( )

( )

r

M

r

l

r

M

r

M

r

M

r

M

r

1 2
3 12 20 2

2
6

4 4 2 2
12

.

29

r
2

2

2

2
2

2

2

2

2

3

3

w g l g

b g

b bg l a

= - + - - -

- - -

- - + - -

+ + + + +

+

+

⎧
⎨⎩

⎡
⎣
⎢

⎤
⎦
⎥

⎫
⎬⎭

The condition ∣dV dr 0eff
r r == + allows one to determine the

angular momentum and the angular frequency ∣ ∣l r2w =f +, where
l is the conserved angular momentum, which then takes the form

( )

( )

( ) ( )

r

M

r

M

r

M

r

1 3 4 2

2
2

4 4 2 2
3

. 30

M

r

M

r

2
2

2

2

2

3

3

2

2

w
g l g

b g

b bg l a

=
- - -

´ + - -

+ - + - -

f
+
-

+ +

+

+ +

⎡
⎣
⎢

⎤
⎦
⎥

The perihelion precession is given by

( )

( )

M

r

M

r

A A A O
r

3
1

2 1

3

1

6

6 2 9 6
1

,

31

p

3 2

5 2

1 2
2

2
2

2

w
g b

l g g

= +
- -

+

´ + - + - +

+ +

+
⎜ ⎟

⎧
⎨⎩

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎫
⎬⎭

where A1= 4− 4β+ 2βγ+ 2γ2+ 2λ− α and A2= 2− β− γ.
Following Weinberg (1972), the perihelion precession in the
above equation can be written in terms of the finite eccentricity
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and the semimajor axis as follows:

( )

( )

( )

M

e P

M

r

A A A O
r

3

1
1

2 1

3

1

6

6 2 9 6
1

,

32

p

3 2

2 5 2

1 2
2

2
2

2

w
g b

l g g

=
-

+
- -

+

´ + - + - +

+

+
⎜ ⎟

⎧
⎨⎩

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎫
⎬⎭

where P and e refer to the semimajor axis and eccentricity of
the ellipse, respectively. After some straightforward calcula-
tions, we obtain the perihelion shift as follows:

( )

( )

( )

 M

e P

M

r

A A A O
r

6

1
1

2 1

3

1

6

6 2 9 6
1

,

33

2

1 2
2

2
2

2

f
p g b

l g g

=
-

+
- -

+

´ + - + - +

+

+
⎜ ⎟

⎧
⎨⎩

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎫
⎬⎭

where the leading-order term in Equation (33) must be small so
that it does not conflict with observational data. Considering
now the observational data (Carloni et al. 2011) tabulated in
Table 1 and using the PPN bound, we try to gauge the value of
the residual perihelion shifts of the planet Mercury δωp/ωp in
particular cases. With the solar mass given by M≈ 9 · 1037 in
Planck units, the third term of the expression in Equation (33)
is extremely small,

( ) ( )M

r
4 1, 34l a-

+

becauseM/r+∼M/P≈ 10−8. For this, the perihelion shift data
become very weak and do not allow one to derive strong
constraints on the value of the expansion parameters λ and α

together with the PPN parameters. Hence, the bound from the
perihelion shift cannot give strong constraints on the
abovementioned parameters. Furthermore, Equation (34)
implies that

( ) 1 and 1. 35l a

3.2. Light Bending

In this subsection, we study and explore the classical light
bending. To do this, we consider the quantity r in Equation (26),
which vanishes at the point where the worldline of the photon
becomes close to the Sun, i.e., r= r0. Thus, the effective potential
given by Equation (28) is taken to be the energy E at r0. Placing

this value for E into Equation (26) with the photon trajectory, one
can then have the following expression:
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where the N(r) and B(r) functions are given in Equation (11).
Now it is straightforward to obtain the photon deflection angle
as follows:
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Here we note that the term 4M/r0 refers to the general
relativistic effect, and the rest of all terms in brackets in
Equation (37) must be sufficiently small to avoid conflicting
with observational data. Now we take into account the
observational data for the deflection angle (Shapiro et al.
2004; Carloni et al. 2011), which allows one to constrain the
expansion parameters λ and α through the bound on the
deflection angle,

( )1.2 10 4 10 . 383 4d j
j

- ´ <
D
D

< ´- -

The term δΔj in the above expression includes the second-
and third-order terms in M/r0. Following Carloni et al. (2011),
r0 can approximately be taken to be two solar radii, i.e.,
r0≈ 8× 1043 in Planck units. Plugging this value into
Equation (38), one can constrain the expansion parameters α

and λ. However, it turns out to be very complicated to obtain
the constraints on these parameters because δΔj includes
higher-order terms of M/r0 that could be equal to a very low
value, which is of order ( )M r 100

2 12» - and ( )M r0
3 »

10 18- . It does therefore turn out that the deflection angle with
the observational data cannot provide strong constraints on the
abovementioned parameters. One can expect, however, that
these parameters take low values, i.e., λ∼ α= 1.

Table 1
Numerical Values of the Semimajor Axes P, the Eccentricities e, the Perihelion Shifts !f, and the Relative Perihelion Shifts δωp/ωp Tabulated for All SS Planets

(Carloni et al. 2011)

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Icarus

P 4 · 1045 7 · 1045 9 · 1045 1.4 · 1046 5 · 1046 9 · 1046 1.8 · 1047 3 · 1047 1.0 · 1046

e 0.2 0.007 0.017 0.09 0.05 0.06 0.05 0.011 0.8
 P M2 p

3 2f pw= 43 8.6 3.8 1.3 0.06 0.014 0.002 0.0007 9.8

δωp/ωp 1.2 · 10−4 3 · 10−2 1.1 · 10−4 4 · 10−4 0.6 3 · 102 7 · 103 ? 8 · 10−2

Note. We note, however, that the values of the uncertainties in the perihelion shifts of SS planets have been discussed and presented recently in Iorio (2015, 2019).
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3.3. Radar Echo Delay

We then turn to the standard measurement of the time delay
that stems from the light bending. Here, we consider the
time delay of light and evaluate it together with clock effects
for a radar signal that is sent from Earth to some object
and is reflected back from the target to Earth (see, e.g.,
Weinberg 1972). To do this, we first consider the
following differential equation, which can be written as
follows:
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From this equation, we calculate the integral for the time in
which the light travels from r0 to r. Hence, it has the form
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and we then find the time delay in the general form as follows:
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It is worth noting here that for the further analysis, we consider
r0 as a distance that is on the order of the solar radius. Also, rT
and rE refer to the distance of the target and of the Earth,
respectively, from the Sun. However, we consider for
simplicity rT and rE as the semimajor axes of the orbits of
the target and the Earth for the further analysis (see Table 1).
We note that in Equation (41), the first term on the right-hand
side corresponds to the general relativistic PPN result, while the
second term corresponds to the correction that comes from the
expansion parameters of spherically symmetric PRZ spacetime.
In doing this, we analyze the time delay and its bound in order
to obtain both upper and lower limits on the expansion
parameters λ and α using the observational data (Bertotti et al.
2003),

· ( )t

t
10 2 10 , 426 5d

- <
D
D

<- -

which in turn allows one to determine the bound for
higher-order expansion parameters associated with the
higher-order terms of M/r0. However, M r2

0
2 in the third term

of Equation (41) is ≈10−12 when the distance is taken to be
r0≈ 7× 1043 (see, e.g., Bertotti et al. 2003). It therefore does
not cause explicit constraints on these higher-order expansion
parameters. As a consequence of the analysis of the time delay
due to light bending, one can deduce that these higher-order
expansion parameters could take low values, i.e., λ∼ α= 1,
similarly to what was observed in the previous analysis.
In this section, we have shown that it is not possible to obtain

accurate and explicit constraints on the higher-order expansion
parameters α and λ through the observational data for the solar
system tests because the factors M/r+ and M/r0 and their
higher-order terms in the expression of perihelion shift, light
deflection and gravitational time delay, are infinitely small and
thus have no significant impact on SS tests. Therefore, the
capacity of the observational data for SS tests is not high
enough to place a strong constraint on the higher-order
expansion parameters of the PRZ spacetime. To obtain the
best-fit constraints on these expansion parameters, we must test
and consider observations of phenomena of the S2 star, which
is located in the star cluster close to Sgr Aå. It would therefore
be expected that the observational data for the S2 star orbiting
Sgr Aå are capable to constrain the higher-order expansion
parameters. This is what we intend to examine in the next
section.

4. Limits on the Parameters of the PRZ Spacetime via the
Orbit Data of Star S2

The Galactic center of the Milky Way galaxy provides an
excellent physics laboratory for various observational and
experimental tests of the black hole models and theories of
modified gravity in their most extreme limits. In fact, it was
argued that one can use the S cluster stars to set constrains on
the black hole mass, which is 4.07× 106Me at a distance of
approximately 8.35 kpc from us (Gillessen et al. 2017). So far,
there is no observational evidence that Sgr Aå possesses an
astrophysical jet or any accretion disk. Moreover, it is less clear
whether Sgr Aå is accreting gas via Bondi radially infall
accretion or through a disk. However, the indirect evidence of
an accretion disk about Sgr Aå is relevant to the recent
detection of the Sgr Aå shadow reported by the Event Horizon
Telescope (EHT) collaboration (Akiyama et al. 2022). The
shadow is formed by the light emitted from the accretion disk,
which subsequently is deflected by the black hole and
eventually arrives at the EHT detectors. Further constraints
on the mass, spin, and geometry of the Sgr Aå black hole can
be deduced from the observations of its shadow in the near
future (Perlick & Tsupko 2022).
In this section, we focus on the constraints of the expansion

parameters by using observations of phenomena of star S2,
which is located in the star cluster close to Sgr Aå. Star S2
orbits Sgr Aå (Ghez et al. 2000, 2005; Nucita et al. 2007;
Lacroix 2018), and thus it plays an important role in a study of
the physical properties of the central black hole, Sgr Aå, i.e., its
parameters are of the primary astrophysical importance. It has
very recently been shown that wormhole models as candidates
for Sgr Aå are tested by the motion of the S2 star (see, e.g.,
Jusufi et al. 2022b). Moreover, the motion of star S2 has been
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used to constrain different models for the dark matter
distribution inside the inner Galactic region, such as the dark
matter spike model (Nampalliwar et al. 2021) or the loop
quantum gravity model (Yan et al. 2022). Moreover, the S2 star
observations have been used to constrain the barrow
entropy (Jusufi et al. 2022a). With this motivation, we also
consider the motion of the S2 star to set constraints on the
parameters of PRZ black hole spacetime, as described by the
line element proposed in Rezzolla & Zhidenko (2014), as a
candidate for the Sgr Aå compact object at the center of the
Milky Way galaxy.

Thus, we further consider the motion of star S2 around the PRZ
spacetime geometry and solve the equations of motion numerically
(see Becerra-Vergara et al. 2020 for details) by adapting the
method related to the analysis of the periastron shift of the S2 star
possessing orbit parameters. Thus, we limit the values of the
expansion parameters of spherically symmetric PRZ spacetime
through the phenomena of star S2. In Figure 1 we show the best-
fitting orbit of star S2 as stated by the observational data given
inDo et al. (2019). Note that the black five-pointed star polygon in
Figure 1 indicates the location of Sgr Aå.

4.1. Datasets

We further apply the astrometric and spectroscopic data for
star S2. We note that these data are publicly available
and have been collected. There are three various parts for
these data: astrometric positions, radial velocities, and the
pericenter precession, which we further use for our purpose.
The details of these three parts can be summarized as follows:
1. Astrometric positions: 145 astrometric positions for
star S2 starting from 1992.224 to 2016.53 as reported in

Gillessen et al. (2017) are used in our analysis. It is worth
noting that before 2002, all data were obtained/collected from
the ESO New Technology Telescope (NTT), while the
remaining data were collected since 2002 from the Very
Large Telescope (VLT). In Figure 1 we plot these data. We
show the data from NTT and VLT as blue and red points,
respectively, as shown in Figure 1. 2. Radial velocities: the
data for 44 radial velocities can be used from 2000.487 to
2016.519 (see, e.g., Gillessen et al. 2017). Similarly, the data
for the radial velocities were collected by various observing
sources, i.e., the data from NIRC2 before 2003 and from the
INtegral Field Observations in the Near Infrared (SINFONI)
after 2003. We show these data in Figure 2 for the radial
velocity VR as a function of epoch year. 3. Orbital precession
of star S2: the orbital precession of star S2 has been observed
and measured by the GRAVITY Collaboration (see, e.g.,
GRAVITY Collaboration 2020),

( )1.10 0.19. 43per orbitfD = 

It is a well-known fact that the orbital precession becomes an
important phenomenon as a remarkable prediction of GR (see
Figure 1). For our purpose, we apply its measurement in
the analysis of the Markov Chain Monte Carlo (MCMC)
simulations.

4.2. Modeling the Orbit with Relativistic Effects

We consider the equations of motion for massive particles
and apply them to explore the motion of the orbit of star S2
with relativistic effects. To do this, one needs to integrate
Equations (25) and (26) numerically by imposing the initial
conditions, including coordinates {t(λ0), r(λ0), f(λ0)}, and
their first derivatives { ( ) ( ) ( )}  t r, ,0 0 0l l f l . This would play a
key role in deriving the positions of star S2 in the orbital plane,
but its astrometric positions as stated above can be determined
in the celestial plane. The point to be noted here is that one can
approximate the motion of star S2 in the abovementioned two
planes by using the elliptical orbit. It is then possible to
compare the theoretical and astrometric positions if and only if
one considers all observational quantities to lie in the same
plane. For this purpose, one can consider a projection of the
theoretical positions on the celestial plane with the help of the
following coordinate transformations:

( )X x y , 44= + 

Figure 1. Observed orbit of star S2 around Sgr Aå. Note that we obtained the
orbit of star S2 around Sgr Aå as a model fitting with PRZ spacetime geometry
by applying the observational data.

Figure 2. The dataset of the radial velocities of star S2 used in our analysis and
the fitting curve by PRZ spacetime.
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( )Y x y , 45= + 
( )Z x y . 46= + 

Here, we note that (X, Y, Z) and (x, y, z) refer to the coordinates
in the celestial and the orbital planes, respectively, while

, , , , ,      are the corresponding coefficients, which are
defined by

( )icos cos sin sin cos . 47w w= W¢ ¢ - W¢ ¢
( )isin cos cos sin cos , 48w w= W¢ ¢ + W¢ ¢
( )isin sin , 49w= ¢
( )icos sin sin cos cos , 50w w= - W¢ ¢ - W¢ ¢
( )isin sin cos cos cos , 51w w= - W¢ ¢ + W¢ ¢
( )icos sin , 52w= ¢

where w¢ and W¢ refer to the perihelion argument and the
longitude of ascending node, respectively, with the orbital
inclination i of star S2 the elliptical orbit.

We furthermore assume that an offset exists between the
gravitational center and the reference frame considered here,
and thus we have x0, y0, vx0, and vy0 for the further modeling
process (see, e.g., Do et al. 2019),

( ) ( )( ) ( )X X t x v t t t , 53em 0 x0 em em J2000= + + -
( ) ( )( ) ( )Y Y t y v t t t . 54em 0 y0 em em J2000= + + -

Here we would like to mention that tJ2000 and tem are used to
delineate the Julian year 2000 and the epoch of the emitting
light, respectively. To compare these theoretical positions with
the astrometric data, one also needs to take several relativistic
effects into account.

We fist take the Romer time delay effect into consideration
because it changes the arrival time of the light that comes from
the orbiting star located far way or closer to the Earth. We
define the Romer time delay as follows:

( ) ( )t t
Z t

c
, 55obs em

em- =

with the epoch tobs when the light is observed, while Z is
derived from Equations (46). However, it is very complicated
to solve this equation, but an alternative method exists to
approach and solve this equation (for details, see GRAVITY
Collaboration 2018; Do et al. 2019), and it is given by

( ) ( )( )
( )

t t
Z t

c
. 56i

i

em
1

obs
em= -+

After some iterations, this yields

( ) ( )t t
Z t

c
. 57em obs

obs» -

Next, we wish to consider the effect of the frequency shift ζ
for a photon, which has the following relation associated with
the radial velocity of star S2:

( )V

c
, 58em obs

obs

Rz
n
n

n n
n

=
D

=
-

=

with the emitted frequency νem and the observed frequency νobs
of the light, and the radial velocity VR of star S2. Two main
relativistic effects exist that can have a significant impact on the
abovementioned frequency shift: the Doppler shift ζD, and the
effects of the gravitational redshift ζG. For example, the first

effect we consider is the Doppler shift ζD, which stems from the
relative motion between the observer and the star. Thus, the
Doppler shift can give rise to a significant impact such as that
of the high orbital velocity of star S2,

·
( )

n v

1

1
. 59

v

c
D

em

em
2

2

z =
-

-

Here, we note that vem refers to the velocity measured at at tem,
while n · vem refers to the the projected velocity onto the light
sight (i.e., the radial velocity). Another relativistic effect is the
gravitational redshift ζG, which is caused by a pure GR effect,
and its frequency shift can be drastically influenced by a strong
gravitational field,

( )
g

1
. 60

tt
Gz =

-

Because the frequency shift is relevant for the Doppler and
gravitational field effects, it can then be defined by

· ( )1. 61D Gz z z= -

We further need to describe the corresponding radial velocity VR of
star S2. For this purpose, we consider that any movement of Sgr
Aå toward the Sun would lead to a change in the velocity, i.e, there
may exist an offset and drift between the reference frame and the
gravitational center. To model VR, one needs to introduce a new
parameter vz0. One can then be able to define the radial velocity of
the S2 star via vz0, similarly to what was done previously for the
positions given by Equations (44)–(46). Hence, it can be written as
follows (Reid et al. 2007):

· ( )V c v . 62R z0z= +

4.3. Analysis of the Markov Chain Monte Carlo

For the further analysis, we apply the MCMC simulations
(see, e.g., Foreman-Mackey et al. 2013) in order to constrain
the expansion parameters of spherically symmetric PRZ
spacetime. Let us then introduce the set of parameters

{
} ( )

M R a e i t

x y v v v

, , , , , , , ,

, , , , , , , , , 63x y z

0 apo

0 0 0 0 0

w
b g a l

¢ W¢

and explore them to obtained their best fit, with the available
data associated with the theoretical orbits, as presented in
Section 4.1. Here we note that M and R0 denote the black hole
mass and the distance from the black hole to the Earth,
respectively, while { }a e i t, , , , , apow¢ W¢ represent the set of six
orbital elements of the elliptical orbit of star S2, and another set
of five parameters { }x y v v v, , , ,x y z0 0 0 0 0 corresponds to the drifts
of the reference frame and the zero-point offsets. The
remaining four parameters {β, γ, α, and λ} are the expansion
parameters of PRZ spacetime, as mentioned in the previous
section. Another key point we note is that the orbit of star S2
may not be exactly an ellipse. However, we assume that the
orbit is elliptical and refer to the osculating ellipse with the
orbital elements mentioned above.
For the analysis of MCMC simulations together with the

abovementioned parameter space, uniform priors were chosen
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for all parameters. The ranges of parameters β and γ are set as
[0, 2], and the ranges of {α and λ} are [−1, 1].

It is worth noting here that three different parts of data
exist, which, as mentioned in Section 4.1, can be applied
to the analysis of the MCMC simulations. Hence, the
probability function  has three different parts, which are
given by

( )log log log log , 64AP VR pro= + +   

where the first term, log AP , represents the probability of 145
astrometric positional data and is defined by

( )
( )
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Figure 3. Posterior distribution of the orbital parameters of star S2 and the expansion parameters of PRZ spacetime associated with the uniform priors for these orbital
parameters of star S2.
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and the second term, Llog VR, describes the probability of 45
data for the radial velocities and reads

( )
( )

( )L
V V

log
1

2
, 66

i

i i

V
i

VR
R,obs R,the

2

2

R,obs

å
s

-
-

while the third term, log pro , represents the probability of the
orbital precession and is given by

( )
( )log

1

2
, 67pro

obs the
2

,obs
2

f f
s

= -
D - D

fD



where X i
obs, Yi

obs, and Vi
R,obs refer to the data of the astrometric

positions and radial velocities, respectively, and likewise X i
the,

Yi
the, and Vi

R,the refer to the theoretical predictions. Also, x
i

,obsis ,
which appears in the above equation, refers to an appropriate
statistical uncertainty for the corresponding quantities. Here,
we would like to mention the orbital precession Δfobs of star
S2 given by Equation (43) and the theoretical one Δfthe given
by Equation (33), involving the abovementioned expansion
parameters of PRZ spacetime.

4.4. Results and Discussions

Following all these subsections, we analyzed these
14-dimensional parameter spaces by adapting MCMC simulations
and showing the posterior distributions of these parameter spaces
for the orbital model of star S2 (see Figure 3). Note that we show
the contour plots with 68%, 90%, and 95% confidence regions.
The appropriate constraint values of these parameters are also
tabulated in Table. 2. This is particularly noteworthy because the
results shown here in Figure 3 and Table 2 for the first two
expansion parameters agree well with the results for PPN.

In Figure 3 we show the observational constraints on the
expansion parameters of PRZ spacetime by using the data of

the orbital model of star S2. As a consequence of the analysis,
as shown in Figure 3, we demonstrate the constraint values
through the corresponding posterior distribution of the
expansion parameters, so that the fist two expansion parameters
of PRZ spacetime are observationally constrained to be

1.03 0.35
0.32b = -

+ and 0.93 0.25
0.28g = -

+ at the 90% confidence level.
As stated above, these best-fit constraint values are completely
consistent with the values for the PPN parameters, even though
they are slightly stronger than those derived from observations
of the solar system.
However, we find that the observational constraints of the

higher-order expansion parameters, α, and λ, through star S2 are
more accurate than those of the SS test observations. This is
becauseM/r+, which appears in the third term of Equation (33), is
≈10−4 for star S2, which orbits Sgr Aå, thus resulting in having a
significant impact on the orbital parameters of star S2 as compared
to the one for SS tests. Hence, we have shown that the
observational data for S2 orbiting Sgr Aå are capable of
constraining the last two higher-order expansion parameters of
the black hole described by PRZ spacetime. We must ensure,
however, that the constraints we obtained are the best-fit
constraints on the expansion parameters (i.e., α and λ). To do
this, one has to consider observational data from the immediate
vicinity of the black hole, where M/r+ should be smaller.
Recently, some S-stars (S4711, S62, S4714) orbiting the super-
massive black hole in Sgr A* on short orbital periods (7.6 yr � Pb
� 12 yr) were discovered (Peißker et al. 2020). These stars have
the potential to be used for measuring the general relativistic
Lense-Thirring (LT) precessions (Iorio 2020; Iorio 2023). The
forthcoming direct measurement of the periastron shift of these
stars could lead to tighter constraints on our model parameters,
even for nonspherically symmetric spacetime. In addition to
S-stars, we will also consider the observational data of the selected
microquasars, which are well-known as astrophysical quasiperiodic
oscillations in the close vicinity of the black holes, where the
condition M/r+∼ 10−1 is met. We intend to investigate this next
in this paper.

5. Limits on the Parameters of PRZ Spacetime via
Quasiperiodic Oscillations

In this section, we are concerned with motion perturbations
around stable circular orbits. These perturbations are quasiper-
iodic oscillations (QPOs), the frequencies of which have direct
observational effects (Strohmayer 2001; Barret et al. 2005;
Török et al. 2005; Shafee et al. 2006; Kotrlová et al. 2008;
McClintock et al. 2011; Belloni et al. 2012; Azreg-Aïnou et al.
2020). We focus on the case of perturbed circular motion
because it faithfully represents the trajectories of infalling
matter in accretion processes.
From now on, we consider stable paths in the θ= π/2 plane.

Epicyclic motion on a stable circular path has two components:
one is a radial component in the equatorial plane, and the other one
is a vertical component perpendicular to that plane. Instead of
restricting ourselves to a special spherically symmetric metric, we
consider for simplicity its most general form for the further
analysis,

( ) ( ) ( ) ( )ds g r dt g r dr g r d . 68tt rr
2 2 2 2= - + + Wqq

The details of the derivations are given in Aliev & Galtsov
(1981) and Azreg-Aïnou et al. (2020) for special static
metrics and in Azreg-Aïnou (2019) for rotating metrics. Upon

Table 2
Constraint of the Best-fit Values of the Expansion Parameters {β, γ, α, and λ}
and the Orbital Model Parameters of Star S2 in PRZ Spacetime Tabulated as

Stated by the Analysis of the MCMC Simulations

Parameters Best-fit Values

M (106 Me) 4.127
R0 (kpc) 7971
a (mas) 128.24
e 0.89077
ι (°) 133.64
ω (°) 65.741
Ω (°) 227.07
tapo (yr) 1994.2913
x0 (mas) 1.06
y0 (mas) −2.51
vx0 (mas yr−1) 0.134

vy0
(mas yr−1) 0.020

vz0 (km s−1) 13.42

β 1.03 0.35
0.32

-
+

γ 0.93 0.25
0.28

-
+

α (−0.09, 0.09)
λ (−0.09, 0.09)

Note. Note that the constraint ranges on the expansion parameters are obtained
through the posterior region at the 90% confidence level.
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following the same steps of the derivation, we arrive at

( )

( )

g g g g g g g g

g g g

g g

g g

1

2

2 2

2 2
,

69

r
tt tt tt tt tt

tt rr

tt

rr

2

n
p

=
¢ - ¢ ¢ - 

+
¢ 

¢
qq qq qq

qq

qq

qq

( )
g

g

1

2
, 70ttn

p
=

- ¢

¢q
qq

where the prime notation denotes the derivative with respect to r.
Here, νr and νθ are the frequencies of the perturbed circular motion
as detected by an observer at spatial infinity, which are related to
the local frequencies, Ωr and Ωθ, by νr=Ωr/(2πu

t) and νθ=
Ωθ/(2πu

t), where ut and uj are the only nonvanishing
components of the four-velocity vector of the infalling particle.
Expressions similar to Equations (69) and (70) in the presence of a
magnetic source were derived in Shaymatov et al. (2022).

For the case of the spherically symmetric metric we are
considering in this work, Equations (1), (11), and (12), we have

( ) ( ) ( )g r c
r

r

r

r

r

r
1

2 2 2
, 71tt

g g g2
2

2

3

3
b g a= - - + - +⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )g r
r

r

r

r
1

2 2
, 72rr

g g
2

2
g l= + +

( ) ( )g r r , 732=qq

where rg=GM/c2, and c and G are known physical constants
taking the values in the SI system of 299792458 and
6.673× 10−11, respectively. To be consistent with the expan-
sions in Equations (11) and (12), we only keep the following
terms in the expansions of νr and νθ in terms of the

dimensionless variable y= r/rg:

( ) ( ) ( )

( )

c

GMy

y y

2

1
2 3 4 3 4 2 8
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3

3 2

2

2
n

p
b g a b g

= -
-

-
+ -
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⎛
⎝

⎞
⎠

The two peaks in the power spectra from the GRO J1655-40
Galactic microquasar,

( )


M

M
GRO J1655 40: 6.30 0.27,

450 3 Hz, 300 5 Hz, 76U Ln n

- = 

=  = 

are at 300 Hz and 450 Hz (Strohmayer 2001). These two twin
values of the QPOs are most certainly due to the phenomenon of
resonance, which is due to the coupling of nonlinear vertical and
radial oscillatory motions (Abramowicz et al. 2003; Horák &
Karas 2006). The main three models for resonances (Abramowicz
et al. 2003; Rebusco 2004; Deligianni et al. 2021; Banerjee 2022)
are parametric resonance, forced resonance, and Keplerian
resonance. There are other models as well (Banerjee 2022). In all
three main models, νU and νL are linear combinations of the
frequencies νr and νθ detected by an observer at spatial infinity.
The observed ratio νU/νL= 3/2 can be compared with theory by
making different assumptions within a resonance model.
The parameters γ, β, α, and λ, as determined in the previous

sections, have almost identical values to those of the
Schwarzschild solution. We know from previous studies
(Kološ et al. 2015) that parametric resonance is not able to
justify the two twin peaks at 300 Hz and 450 Hz if the GRO
J1655-40 microquasar is modeled by a Schwarzschild black

Figure 4. Curve fit to the data of the GRO J1655-40 Galactic microquasar (see Equation (76)). The black curves represent νU = νθ + νr, the magenta curves represent
νL = νθ, and the blue lines represent the uncertainty on the mass of the GRO J1655-40 microquasar. For these plots, we took γ = 1 + 2.3 × 10−5,
β = 1 + 2.3 × 10−4, λ = 0.06, and the values of α are shown in the plots.
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hole unless the effects of a magnetic field surrounding the black
hole are taken into consideration. Thus, we opt for forced
resonance (Deligianni et al. 2021; Banerjee 2022) with the
model

( ), , 77U r Ln n n n n= + =q q

which provides better results than the other models, i.e.,
νU= νθ and νL= νθ− νr. We use a graphical presentation, i.e.,
we plot νU and νL in terms of the mass ratio M/Me for the
value of the radial coordinate satisfying νU/νL= 450/300=
3/2 and fixed (γ, β, α), and we observe that the curves
representing νU and νL cross the mass error band of the GRO
J1655-40 microquasar (see, e.g., Kološ et al. 2015). For better
results, we have selected this microquasar, which has the
narrowest mass band error ΔM= 0.54Me (see Equation (76)).
All panels of Figure 4 clearly depict the results. The black
curves represent νU= νθ+ νr, and the magenta curves
represent νL= νθ given in Equation (77), and the blue lines
represent the uncertainty on the mass of the GRO J1655-40
microquasar. For theses plots, we have taken γ= 1+
2.3× 10−5, β= 1+ 2.3× 10−4, λ= 0.06, and the values of
α are shown in the plots. From Figure 4, one can observe that
the values of α,

( ) 0.03 0.09, 78a-

offer a better curve fitting.
When the constraint in Equation (78) is admitted, one can

move one step further in constraining the parameters of some
other microquasars, e.g., the frequencies of the two peaks in the
power spectra. The next microquasar with a well-constrained
mass is XTE J1550-564 with ΔM= 1.2Me, which is given as

( )


M

M
XTE J1550 564: 9.1 0.6,

276 3 Hz, 184 5 Hz. 79U Ln n

- = 

=  = 

Let the mass of the microquasar be in the middle of the mass
band, M= 9.1Me. We assume that the constraints given in
Equation (78) hold well. In doing so, we further show in panel
a of Figure 5 that the values

( )278 Hz and 181 Hz 80U Ln n= =

offer a better curve fitting for the XTE J1550-564 microquasar
than the values νU= 276 Hz and νL= 184 Hz, which are in the
middle of the frequency bands, as panel c of Figure 5 depicts.
In panel b, we show that the curve fitting improves
progressively upon departing from the middle values in the

frequency band, and when the values νU= 278 Hz and
νL= 181 Hz are adopted.
From the analysis, we can infer that the obtained constraint

values through the observations of QPOs in the black hole
vicinity also satisfy the best-fit constraint values obtained by
applying the observations of star S2 phenomena around Sgr Aå.

6. Conclusion

To test the extended theories of gravity, parameterization
plays an important role in mimicking various gravity theories
by using an expansion of the metric functions in terms of
small dimensionless parameters. Therefore, in order to have
constraints on the expansion parameters of spacetime from
observation data, it becomes increasingly important to exploit
the information obtained from classical solar system tests, the
observations of phenomena of star S2, which is located in the
star cluster close to Sgr Aå, and microquasars. With this in
view, one may be able to obtain information about spacetime
geometry near the horizon.
In this paper, we expanded the functions of the radial

coordinate of spherically symmetric PRZ spacetime and found
the higher-order expansion parameters α and λ, which extend
beyond the first-order PPN parameters. We then studied the
constraints on the parameters of spherically symmetric PRZ
spacetime through classical tests of SS effects, the data of star
S2, which orbits Sgr Aå, and the data from the GRO J1655-40
and XTE J1550-564 microquasars. We determined the
analytical expressions for SS effects, e.g., the perihelion shift,
the light deflection, the gravitational time delay, and the QPO
frequencies, to determine constraints on the higher-order
expansion parameters of spherically symmetric PRZ spacetime
(Rezzolla & Zhidenko 2014). We found the constraints on the
two expansion parameters α and λ, which survive only in the
vicinity of the horizon by using the abovementioned three
different observational data and approaches.
We further considered the impact of the expansion

parameters of PRZ spacetime on the orbit of star S2, which
orbits Sgr A* at the center of the Milky Way galaxy, which can
provide excellent tests in probing black hole properties. We
also considered the effects of PRZ spacetime to compare them
with the astrometric and spectroscopic data that are publicly
available and involve the astrometric positions, the radial
velocities, and the orbital precession for star S2 considered in
this paper. Taking all together, we applied the MCMC
simulations to probe the possible effects of these expansion
parameters on the orbit of star S2 and the constraints on the
parameters of spherically symmetric PRZ spacetime. We
found the best-fit constraint values through the corresponding

Figure 5. Curve fit to the data of the XTE J1550-564 Galactic microquasar (see Equation (79)). The black curves represent νU = νθ + νr, the magenta curves represent
νL = νθ, and the blue lines represent the uncertainty on the mass of the XTE J1550-564 microquasar. For these plots, we took γ = 1 + 2.3 × 10−5,
β = 1 + 2.3 × 10−4, λ = 0.06, and α = 0.05. Observing the new constraint, panels (a), (b), and (c) correspond to (νU = 278 Hz and νL = 181 Hz), (νU = 277 Hz,
νL = 183 Hz), and (νU = 276 Hz, νL = 184 Hz), respectively.
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posterior distribution of the expansion parameters, which
can be observationally constrained to be 1.03 0.35

0.32b = -
+ , g =

0.93 0.25
0.28

-
+ and α, λ= (−0.09, 0.09) at the 90% confidence level.

However, we found that the observational constraints on α and
λ are more accurate than that of SS tests and that have
significant impact on the orbit of star S2. Therefore, it was
shown that the observational data for star S2, which orbits Sgr
Aå, can constrain the expansion parameters of PRZ spacetime,
thus allowing one to obtain the best-fit constraint region on the
expansion parameters α and λ.

To confirm what we obtained through observational data for
star S2, we also considered observational data in the close
vicinity of the black hole, i.e., M/r+∼ 10−1 was always
satisfied, which is comparable with the orbit of star S2 around
Sgr Aå. Therefore, we studied the epicyclic motions and
derived the analytic form of the epicyclic frequencies used to
constrain these expansion parameters of PRZ spacetime by
applying data of the selected microquasars that are well-known
as astrophysical QPOs, which are interesting tools for testing
and constraining the geometry of metric fields because, as
noted in Banerjee (2022), their frequencies solely depend on
the spacetime metric and not on the details of the accretion
process. Even the radius of the ISCO where accretion occurs
only depends on the background metric, provided the energy-
momentum tensor of the fluid is seen as a test matter. From this
point of view, QPOs provide deeper insights into the
background metric. Thus, observations of QPOs have been
used as very potent tests in probing the unknown aspects
associated with precise measurements and constraints of the
parameters of black holes. Further, we obtained constraints on
the higher-order expansion parameters of PRZ spacetime and
constraints on the frequencies of the two peaks in the power
spectra of the GRO J1655-40 and XTE J1550-564 micro-
quasars. We showed that the obtained best-fit constraint values
through observations of phenomena of star S2 are well satisfied
by the observations of QPOs in the vicinity of the black hole.

Finally, taking into consideration all results, we can state that
these two higher-order expansion parameters would be in the
range α, λ= (−0.09, 0.09) and ∼10−2 as inferred from the
observations of SS tests, star S2, which orbits Sgr Aå, and
QPOs around a black hole. As a consequence, our results
suggest that the higher-order expansion parameters α and λ
would survive only in the vicinity of a black hole horizon in the
strong-field regime.
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