A Deep LSTM Approach for Activity Recognition
Özet
Since 1990s, activity recognition effectual field in machine learning literature. Most of studies that relevant activity recognition, use feature extraction method to achieve higher classification performance. Moreover, these studies mostly use traditional machine learning algorithms for classification. In this paper, we focus on a deep (Long Short Term Memory) LSTM neural network for feature free classification of seven daily activities by using raw data that collected from three-dimensional accelerometer. Based on the results, the proposed deep LSTM approach can classify raw data with high performance. The results show that the proposed deep LSTM approach achieved 91.34, 96.91, 88.78, 87.58 as percent classification performance in terms of accuracy, sensitivity, specificity, F-measure respectively.