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In this paper, we study the influence of the axion-plasmon, as proposed in (Phys. Rev. Lett. 120,
181803 (2018)) on the optical properties of the Schwarzschild black hole. Our aim is to provide a
test to detect the effects of a fixed axion background using black holes. To accomplish our goal, we
explore the effect of the axion-plasmon coupling on the motion of photons around the Schwarzschild
black hole and check the possibility of observing those effects upon the black hole shadow, the
gravitational deflection angle, Einstein rings and shadow images obtained by radially infalling gas
on a black hole within a plasma medium. We find that these quantities are indeed affected by the
axion-plasmon coupling parameters which consequently generalize some of the well-known results
in the literature. It is shown that the size of the black hole shadow decreases with increasing
axion-plasmon if observed from sufficiently large distance.

I. INTRODUCTION

Axions are the cold(est) and very light particles which
interact very weakly with the standard model of parti-
cles especially with photons and are commonly termed
the weakly-interacting-scalar particles (WISP). Axions
are helpful in explaining the smallness of cosmological
constant as well [1], and are helpful to resolve the strong
CP problem in QCD within the framework of string the-
ory [2]. For the latest reviews on axions physics, the
reader is referred to [3, 4]. In the cosmological con-
text, the energy density of the axion scalar field varies
as ρ ∼ a−3 (a being the scale factor), thus behaving like
a dark matter, however, the precise fraction of axions
to the total dark matter sector is not known with cer-
tainty [5, 6]. Due to these properties, axions are consid-
ered as an ideal candidate for particle dark matter in the
observable universe. In the astrophysical context, the
axions-photons conversion in the presence of magnetic
field can provide a coolant mechanism of stars, known
as Primakoff mechanism [4]. The coupling parameter g
between the axion field ϕ and the magnetic field B (the
term gϕB which appears in the modified Maxwell equa-
tions, see [7]) has been constrained by different experi-
ments establishing g < 0.66 × 10−10(GeV )−1, for axion
particle mass mφ < 0.02eV at the 2σ level [8].

It is also well-known that axions also interact with
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the plasma in the presence of magnetic field. Some of
the ideal astrophysical environments to detect axions are
magnetized plasmas occurring near compact stars and
black holes (BHs). Plasma plays a central role in the
efficient axion-photon conversion in the atmosphere of
magnetars [9]. Several properties of light propagation
within axion-plasma background such as spectral distor-
tion, time delays and refraction have been recently inves-
tigated in [10] where it was shown that the introduction
of plasma enhances the sensitivity to axion-induced op-
tical phenomena. In the laboratory, axions may also be
produced by an experiment based on a principle ‘plasma-
shinning-through-a-wall’, where an electron beam passes
through a magnetized plasma yields a beam-plasma in-
stability thereby creating plasmon which upon interact-
ing with the applied magnetic field converts to axions.
An intervening wall allows axions to pass through and
converting them to photons which are later probed by
a single-photon microwave detector [11]. This model in-
volves a free parameter Ω which represents the axion-
plasmon coupling, one of our aims is to constrain Ω and
determine its impact on the BH shadow using the latest
available astronomical observations.

More recently, the Event Horizon Telescope (EHT) col-
laboration has obtained data about the shadow images
of M87 central supermassive BH [12]. Essentially, what
EHT astronomers have observed are called ‘relativistic
images’, also used by most of the theoretical astrophysi-
cists, and the shadow of BHs (as studied in this paper)
is due to the formation of relativistic images. In view
of this, it is important to mention that the term of rela-
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tivistic images was first coined and investigated by Virb-
hadra and Ellis [13] (see also a later work [14]). Photon
spheres are responsible for the formation of BH shadows.
The concept of the photon sphere was in the primitive
stage until Claudel et al. [15] rigorously defined a pho-
ton sphere and a more general term ‘photon surface’,
and proved many significant theorems that are going to
have important implications for BH shadows, observa-
tional as well as theoretical. Using the EHT astronomi-
cal dataset, free parameters of numerous BH solutions in
general relativity and modified gravity theories have been
constrained [16–21]. The influence of the parameters of
a BH on the shape of observable BH’s shadow is shown
with more detail in [22–24]. Furthermore, the EHT team
has also determined the pattern of magnetic field near the
M87 galactic center using the polarized synchrotron radi-
ation and measured the magnetic field strength of order
up to 1 − 30G along with electron temperature of order
(1 − 12) × 1010 K within plasma near the BH [25, 26].
The M87 central BH has a mass accretion rate approx-
imately (3 − 20) × 10−4 solar mass per year, however it
is not clear if the accretion is spherical or involves an ac-
cretion disk. These findings favorably suggest that the
role of magnetic field and plasma are quite important for
accretion dynamics and evolution of supermassive BHs.

The phenomenon of bending of light by a massive com-
pact object leading to gravitational lensing and measur-
ing the corresponding deflection angle and image prop-
erties is one of the classical tests of general relativity.
Historically these tests were performed in the weak field
limit but later on these tests were extended to strong
field limit [13, 27–31]. However, the photon trajectory
would be quite different in vacuum and in a dense elec-
trically charged medium such as a plasma near a BH
[32, 33]. It has been reported several times with differ-
ent models in the scientific literature [34–41] that the
plasma surrounding a BH forces light to bend further i.e.
αtot = αBH +αplasma, which represents the contributions
to the total deflection angle due to a BH and plasma sep-
arately. Recently, the effects of the plasma environment
on the shadow of a spherically symmetric BH were in-
vestigated in [42] and on the shape of the shadow of a
rotating BH were investigated in [43, 44]. In fact, the
shadow of a Kerr BH becomes more round and shrinks
in a denser plasma [45] while the BH shadow in the pres-
ence of plasma exhibits a multi-ring or a rainbow like
image due to the refraction of photons with diverse fre-
quencies and furthermore, the influence of plasma on the
motion and trajectories of photons with high frequencies
is barely little (see [46] for a review). For this reason, the
photons with lower frequency can be maximally affected
due to the presence of plasma near the BH and hence
the plasma (or axion-plasmon) effects on the BH shadow
can be observed suitably in the radio waves domain. Al-
though EHT team has observed successfully the shadow
and plasma surrounding the M87 central BH, however
the effects of plasma on the shadow has not been de-
tected yet [25, 26]. We expect that advanced radio and

optical telescopes with higher sensitivity would be able
to detect these effects in the future.

In this paper, we assume a model of axion-
plasma cloud surrounding a static spherically symmetric
Schwarzschild BH with a constant test magnetic field. It
is our interest to determine the impact of axion-plasma
cloud on the shadow geometry. Moreover, we like to see
specifically the contribution of axions to the deflection of
angle of light grazing by the BH. The plan of the paper is
as follows. In Sec. II we consider the motion of a photon
around a BH in the presence of a magnetized plasma,
and an axion-plasmon effect on the BH’s shadow is stud-
ied in more detail in Sec. III. In Sec. IV we also consider
the optical properties around a BH, which is a gravita-
tional lensing in the presence of magnetized plasma. In
Sec. V, deflection of massive particles and their corre-
spondence with the light rays are considered with more
details in presence of magnetized plasma. The Einstein
rings in the weak field limit are studied in Sec. VI. In
the Sec. VII, we study the effects of gas accretion in the
presence of plasma on a BH and determine associated im-
pact on the BH shadow. Finally, we discuss our results
in Sec. VIII. Throughout the paper, we use a system of
geometric units in which G = 1 = c. Greek indices run
from 0 to 3.

II. PHOTON MOTION AROUND THE BH IN
THE PRESENCE OF AXION-PLASMON

We consider a generalized electromagnetic theory tak-
ing into account the axion-photon coupling [11, 47]

L = R− 1

4
FµνF

µν −AµJµe + Lϕ + Lint, (1)

where R, Fµν and Jµe denote the Ricci scalar, electro-
magnetic tensor and the four vector current of electrons
respectively while Lϕ = ∇µϕ∗∇µϕ−m2

ϕ|ϕ|2, is the axion

Lagrangian density, finally Lint = −(g/4)εµναβFαβFµν ,
is the photon-axion interaction term where g denotes the
relevant coupling.

The spacetime metric describing a static and spheri-
cally symmetric Schwarzschild BH is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2), (2)

here f(r) = 1− (2M/r) and M denotes mass of the BH.
The Hamiltonian of a photon orbiting around a BH

surrounded by an axion-plasmon medium has the follow-
ing form [48]

H(xα, pα) =
1

2

[
gαβpαpβ − (n2 − 1)(pβu

β)2
]
, (3)

where xα are the spacetime coordinates, pα and uβ are
the four-momentum and four-velocity of the photon re-
spectively and n is the refractive index (n = ω/k, where
k is the wave number). In the case of an axion-plasmon
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contribution, the refractive index is expressed as fol-
lows [11]

n2 = 1−
ω2
p

ω2
− f0
γ0

ω2
p

(ω − ku0)2
− Ω4

ω2(ω2 − ω2
ϕ)

−f0
γ0

Ω4

(ω − ku0)2(ω2 − ω2
ϕ)
, (4)

in terms of the plasma frequency ω2
p(xα) =

4πe2N(xα)/me (e and me are the electron charge
and mass respectively whereas N is the number density
of the electrons), the photon frequency ω(xα) is defined
by ω2 = (pβu

β)2, the axion frequency ω2
ϕ, the axion-

plasmon coupling parameter Ω = (gB0ωp)
1/2 with B0

being the homogeneous magnetic field in the z-direction.
The parameter f0 is the fraction of the electrons in the
beam propagating inside the plasma with velocity u0
and γ0 is the corresponding Lorentz factor. Because the
role of the electron beam scenario near the BH is less
clear, we set f0 = 0 for simplicity and rewrite (4) as

n2(r) = 1−
ω2
p(r)

ω(r)2
− Ω4

ω(r)2[ω(r)2 − ω2
ϕ]
,

= 1−
ω2
p(r)

ω(r)2

(
1 +

g2B2
0

ω(r)2 − ω2
ϕ

)
, (5)

with

ω(r) =
ω0√
f(r)

, ω0 = const. (6)

Experiments concerning the axion-plasmon conversion
impose the following constraint upon frequency scales
ω2
p � Ω2 or ωp � gB0 [11]. The lapse function is such

that f(r) → 1 as r → ∞ and ω(∞) = ω0 = −pt, which
represents energy of the photon at spatial infinity [42].
Besides, the plasma frequency must be sufficiently small
than the photon frequency (ω2

p � ω2) which allows the
BH shadow to be differentiated from the vacuum case.
The Hamiltonian for the light rays in the axion-plasmon
medium has the form

H =
1

2

[
gαβpαpβ + ω2

p

(
1 +

g2B2
0

ω2
0 − ω2

ϕ

)]
. (7)

The components of the four velocity for the photons in
the equatorial plane (θ = π/2, pθ = 0) are given by

ṫ ≡ dt

dλ
=
−pt
f(r)

, (8)

ṙ ≡ dr

dλ
= prf(r), (9)

φ̇ ≡ dφ

dλ
=

pφ
r2
, (10)

where we used the relationship, ẋα = ∂H/∂pα. From
Eqs. (9) and (10), we obtain a governing equation for
the phase trajectory of light

dr

dφ
=

grrpr
gφφpφ

. (11)

Using the constraint H = 0, we can rewrite the above
equation as [42]

dr

dφ
=

√
grr

gφφ

√
h2(r)

ω2
0

p2φ
− 1, (12)

where we defined

h2(r) ≡ − gtt

gφφ
−

ω2
p

gφφω2
0

(
1 +

g2B2
0

ω2
0 − ω2

ϕ

)
. (13)

We now introduce the dimensionless parameters

ω̃2
ϕ =

ω2
ϕ

ω2
0

and B̃2 =
g2B2

0

ω2
0

, (14)

which yield

h2(r) = r2
[ r

r − 2M
−
ω2
p(r)

ω2
0

(
1 +

B̃2

1− ω̃2
ϕ

)]
. (15)

The radius of a circular orbit of light, particularly the one
which forms the photon sphere of radius rp, is determined
by solving the following equation [42]

d(h2(r))

dr

∣∣∣∣
r=rp

= 0. (16)

By substituting Eq. (15) into (16) one can write the alge-
braic equation for rp in the presence of plasma medium
as[ω2

p(rp)

ω2
0

+
rω′p(rp)ωp(rp)

ω2
0

](
1 +

B̃2
0

1− ω̃2
ϕ

)
=

r2p − 3rpM

(rp − 2M)2
,

(17)
where prime denotes the derivative with respect to radial
coordinate r. Clearly the roots of Eq. (17) cannot be
obtained analytically for most choices of ωp(r).

A. Homogeneous plasma with ω2
p(r) = const.

In the special case of a homogeneous plasma with ax-
ions i.e. ω2

p = const., Eq.(17) yields

rp
M

=

√
9− 8ω2

p

ω2
0

(
B̃2

1−ω̃2
ϕ

+ 1
)
− 4ω2

p

ω2
0

(
B̃2

1−ω̃2
ϕ

+ 1
)

+ 3

2
[
1− ω2

p

ω2
0

(
B̃2

1−ω̃2
ϕ

+ 1
)] ,

(18)
where we have selected the root that reduces to the
known value rp = 3M in the absence of other fields.
Plots of rp, as given in Eq. (18), are depicted in Fig. 1
versus the plasma frequency, the magnetic field and the
axion frequency seperately. The figures suggest that all
three physical factors contribute to increase the size of
the photon sphere.
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FIG. 1: Radius of the photon sphere for the homogeneous
plasma with axion field.

B. Inhomogeneous plasma with ω2
p(r) = z0/r

q

Now we explore photon spheres in the presence of an
inhomogeneous plasma with axion, where the plasma fre-
quency is required to satisfy a simple power-law of the
form [49, 50]

ω2
p(r) =

z0
rq
, (19)
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FIG. 2: Radius of photon sphere for the inhomogeneous
power-law plasma with axion field.

where z0 and q are free parameters. To analyze the main
features of the power-law model we restrict ourselves to
the case q = 1 and z0 as a constant [49]. Using Eqs. (17)
and (19), we obtain the radius of the photon sphere for
the inhomogeneous plasma as follows

rp
M

=
1

6

[ (N − 6)2

D
+D +N + 6

]
, (20)
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where

N =
z0
Mω2

0

(
B̃2

1− ω̃2
ϕ

+ 1

)
, (21)

and

D =
3

√
216 + 108N + 12

√
6N(108− 18N +N2)− 18N2 +N3.

(22)

If there is no plasma contribution (z0 = 0), then Eq. (20)
reduces to rp = 3M , which is the photon sphere for a
Schwarzschild BH. Using Eq. (20) we have plotted the
radius of photon sphere versus different free parameters
in Figs. 2. The effects of parameters of axion-plasmon
model on the size of photon sphere are evidently mani-
fested.

III. BH SHADOW IN AN AXION-PLASMON
MEDIUM

In this section we investigate the radius of the shadow
of a Schwarzschild space-time metric in the presence of
a magnetized plasma. The angular radius αsh of the BH
shadow is defined by a geometric approach which results
in [42, 51]

sin2 αsh =
h2(rp)

h2(ro)
,

=
r2p

[
rp

rp−2M −
ω2
p(rp)

ω2
0

(
1 + B̃2

1−ω̃2
ϕ

)]
r2o

[
ro

ro−2M −
ω2
p(ro)

ω2
0

(
1 + B̃2

1−ω̃2
ϕ

)] , (23)

where ro and rp represent the locations of the observer
and the photon sphere respectively. If the observer is lo-
cated at a sufficiently large distance from the BH then
one can approximate radius of BH shadow by using
Eq. (23) as [42]

Rsh ' ro sinαsh, (24)

=

√
r2p

[
rp

rp − 2M
−
ω2
p(rp)

ω2
0

(
1 +

B̃2

1− ω̃2
ϕ

)]
,

where we have used the fact that h(r) → r, which fol-
lows from Eq. (15), at spatial infinity for both mod-
els of plasma along with a constant magnetic field. In
the case of vacuum ωp(r) ≡ 0, we recover the radius of

Schwarzschild BH shadow Rsh = 3
√

3M when rp = 3M .
The radius of BH shadow is depicted for different pa-
rameters in Fig. 3 for a homogeneous plasma with fixed
plasma frequency and Fig. 4 shows the case for a power-
law model of plasma frequency ω2

p(r) = z0/r. We observe
that the size of shadow radius decreases by increasing the
magnetic field strength or the axion-plasmon frequency.
Thus the BH shadow in the presence of axion-plasmon
medium would shrink further, as expected. It is inter-
esting to note that the effects of a homogeneous plasma
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FIG. 3: Shadow’s radius of the BH for the homogeneous
constant-frequency plasma with axion field

on the radius of the BH shadow are more pronounced
than the effects of an inhomogeneous plasma, which is
abundantly clear from Figs. 3 and Figs. 4.
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IV. GRAVITATIONAL LENSING AND
DEFLECTION ANGLE OF LIGHT IN THE

PLASMA WITH AXION FIELD

Now we consider the gravitational lensing of light paths
in the presence of plasma with axion field. The trajectory

is defined by Eq. (11) which implies

dφ

dr
=

1

r2f(r)

pφ
pr
. (25)

Using Eqs. (7), (14) and (25), we arrive at

dφ

dr
= ±pφ

r2
1√

p2t −
f(r)
r2

[
p2φ + r2ω2

p

(
1 +

g2B2
0

ω2
0−ω2

ϕ

)] , (26)

which results in

∆φ = 2

∞∫
R

pφ
r2

dr√
p2t − f(r)

[p2
φ

r2 + ω2
p(r)

(
1 + B̃2

1−ω̃2
ϕ

)] .
(27)

In the above equation, it is assumed that the light ray
travels from the source at spatial infinity, grazing by the
BH with the closest approach at r = R and than escaping
to later arrive at the observer location at infinity. Due
to symmetry of the scenario, we write a factor of 2 in the
above integral.

The light ray is deflected from a straight line path at
the difference of angle π which results in the total deflec-
tion angle given by [52]:

α̂ = 2

∞∫
R

pφ
r2

dr√
p2t − f(r)

[p2
φ

r2 + ω2
p(r)

(
1 + B̃2

1−ω̃2
ϕ

)] − π .
(28)

Note that r = R is a turning point: dr/dλ = 0 and
pr = 0. The expressions of p2t and p2φ at the turning
point are, respectively given by

p2t = f(R)
[ p2φ
R2

+ ω2
p(R)

(
1 +

B̃2

1− ω̃2
ϕ

)]
, (29)

p2φ = R2p2t

[ 1

f(R)
−
ω2
p(R)

ω2
0

(
1 +

B̃2

1− ω̃2
ϕ

)]
. (30)

Using Eqs. (15) and (26) we rewrite the equation of
trajectory of photons in the Schwarzschild spacetime as

dφ

dr
= ± 1√

r(r − 2M)
√

h2(r)
h2(R) − 1

. (31)

The deflection angle in the presence of the plasma with
axion field assumes the form

α̂ = 2

∞∫
R

dr√
r(r − 2M)

√
h2(r)
h2(R) − 1

− π. (32)

where

( h(r)

h(R)

)2
=

r2
[

r
r−2M −

ω2
p(r)

ω2
0

(
1 + B̃2

1−ω̃2
ϕ

)]
R2
[

R
R−2M −

ω2
p(R)

ω2
0

(
1 + B̃2

1−ω̃2
ϕ

)] . (33)
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FIG. 5: Deflection angle versus the impact parameter b in
presence of a plasma axion fluid.

For R�M and a uniform plasma ω2
p = const., we get

h2(r)

h2(R)
' r2

R2

{
1 +

2M

r
[
1− ω2

p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

) ]
− 2M

R
[
1− ω2

p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

) ]}. (34)

Using Eqs. (32) and (34), we obtain

α̂ ' 2M

R

[
1 +

1

1− ω2
p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]. (35)

If b denotes the impact parameter of the light ray, than
for R ' b and considering a uniform plasma ω2

p = const.,
we obtain

α̂(b) ' 2M

b

[
1 +

1

1− ω2
p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]. (36)

Now, we can determine an expansion of the deflection
angle expression for small values of the plasma frequency
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FIG. 6: Deflection angle versus the axion fluid parameters.

(ω2
p/ω

2
0 � 1)

α̂(b) ' 2M

b

[
1 +

1

1− ω2
p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)],
' 4M

b
+

2M

b

ω2
p

ω2
0

+
2M

b

ω2
p

ω2
0

B̃2
0(1 + ω̃2

ϕ), (37)

where the first term corresponds to the gravitational
field, the second term is the plasma contribution and the
last term is due to axion-plasma fluid. In Fig. 5 we de-
pict the deflection angle versus the impact parameter b
of the photons for fixed values of the parameters B̃2

0 , ω̃2
ϕ

and ω2
p/ω

2
0 . Figure 6 represents the dependence of the

deflection angle on the axion fluid parameters for fixed
values of impact parameter b and of ω2

p/ω
2
0 .

V. DEFLECTION OF LIGHT AND
RELATIVISTIC MASSIVE PARTICLES USING

THE GAUSS-BONNET THEOREM

In this section, we shall consider the problem of com-
puting the deflection angle for relativistic massive parti-
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FIG. 7: Schematic representation of the optical geometry of
the BH surrounded by plasma. At the points O and S, the
interior angles satisfy the condition θO + θS → π.

cles. For the same reason, let us consider the physical
spacetime metric to be described by a BH surrounded
by plasma medium. One can get the optical metric for
investigating the deflection of light using ds2 = 0, in the
equatorial plane, this yields

dt2 =
dr2

f2(r)
+
r2dφ2

f(r)
. (38)

We can use the following Gauss-Bonnet theorem
(GBT) to study the deflection of light and that of rel-
ativistic massive particles.

Theorem: Let AR be a non-singular domain with
boundaries ∂AR = γg(op) ∪ CR of an oriented two-
dimensional optical surface S (see Fig 7) with the op-
tical metric g(op). Let K and κ be the Gaussian optical
curvature and the geodesic curvature, respectively. Then,
the GBT in terms of the above construction is written as
follows [53]∫

AR

K dS +

∮
∂AR

κ dt+
∑
k

δk = 2πχ(AR). (39)

In the GBT we have the optical surface element noted
as dS and the exterior angle at the corresponding kth

vertex noted by δk. It is rather interesting to see that the
domain of integration is outside the light ray in the (r, φ)
optical plane having the Euler characteristic number one,
i.e., χ(AR) = 1. Moreover if we introduce a smooth curve
via γ := {t} → AR, we can compute the geodesic optical
curvature using the definition [53]

κ = g(op) (∇γ̇ γ̇, γ̈) . (40)

To simplify our calculations we are going to assume the
unit speed condition given by g(op)(γ̇, γ̇) = 1, with γ̈

which stands for the unit acceleration vector. In the
physical geometry the observer is located far away from
the BH, hence by the same analogy, we can consider very
large radial distance r ≡ R →∞, in such a limit, there-
fore we can express them in terms of the interior angles
using θO = π − δO and θS = π − δS . One can see that
by construction, the two jump angles become π/2 (the
jump angle at the source S and observer O, respectively)
and should satisfy the condition θO + θS → π [53]. As
we know, the geodesic optical curvature for the light ray
vanishes, that is κ(γg(op)) = 0. From the GBT it follows
that [53]

lim
R→∞

∫ π+α̂

0

[
κ
dt

dφ

]
CR

dφ = π − lim
R→∞

∫
AR

K dS. (41)

The nonzero contribution of the geodesic curvature for
the curve CR is found by using [53]

κ(CR) = |∇ĊRĊR|, (42)

and one can show the condition

lim
R→∞

(
κ(CR)

dt

dφ

)
= 1. (43)

Note that, the above condition is true only for asymp-
totically flat spacetimes. For static spacetimes in the
presence of an optical medium, it has been shown that
the optical metric and the spatial part of the spacetime
metric are related by [54]

gopij = − n2

f(r)
gij , (44)

where i, j = 1, 2. In other words, the spatial projections
of the light rays on the slices with t = constant that
solve Hamilton’s equations are also spacelike geodesics of
the optical metric. Let us also note that to compute the
Gaussion optical curvature K, we can use the relation
K = R/2, where R is the Ricci scalar for the optical
metric.

A. Plasma medium with ω2
p = const.

The simplest model corresponds to a medium with a
uniform distribution of plasma. That is, the refractive
index is given by

n2(r) ' 1−
ω2
p

ω2
0

f(r)

(
1 +

B̃2
0

1− ω̃2
ϕ

)
. (45)

Usings Eqs. (38), (44) and (45), we can recast the optical
metric of the BH metric surrounded by the plasma as

dt2 =

[
1−

ω2
p

ω2
0

f(r)

(
1 +

B̃2
0

1− ω̃2
ϕ

)]

×
[ dr2

f(r)2
+

r2

f(r)
dφ2
]
. (46)
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From this, we can compute the Gaussian optical curva-
ture, and after considering series expansion around M/b,
we obtain in leading order terms

K ' −
M
[
2− ω2

p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]
r3
[
1− ω2

p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]2 . (47)

From the GBT, for the deflection angle we have

α̂ = −
π∫

0

∞∫
b

sinϕ

[
−

M
[
2− ω2

p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]
r3
[
1− ω2

p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]2
]
dS, (48)

where we also need the expression for the surface element
approximated as

dS ' r
[
1−

ω2
p

ω2
0

(
1 +

B̃2
0

1− ω̃2
ϕ

)]
drdφ. (49)

Solving the last integral is not difficult, hence we obtain

α̂ ' 2M

b

[
1 +

1

1− ω2
p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]. (50)

As expected, this result coincides with the expression for
the deflection angle obtained by the standard geodesic
methods given by Eq. (37). In addition, this result gen-
eralizes the deflection angle obtained in Ref. [54].

B. Plasma medium with ω2
p(r) = z0/r

q

For this particular model, the refractive index is given
by

n2(r) ' 1− z0
rqω2

0

f(r)

(
1 +

B̃2
0

1− ω̃2
ϕ

)
. (51)

In our particular case, we can recast the BH metric sur-
rounded by plasma as

dt2 =
[
1− z0

rqω2
0

f(r)
(

1 +
B̃2

0

1− ω̃2
ϕ

)][ dr2

f(r)2
+

r2

f(r)
dφ2
]
.

(52)
Performing a series expansion, for the Gaussian optical
curvature we obtain in leading terms

K ' −2M

r3
+

q2z0
2rq+2ω2

0

(
1 +

B̃2
0

1− ω̃2
ϕ

)
. (53)

Hence, the deflection angle is found to be

α̂ = −
π∫

0

∞∫
b

sinϕ

[
− 2M

r3
+

q2z0
2rq+2ω2

0

(
1+

B̃2
0

1− ω̃2
ϕ

)]
dS. (54)

Finally, solving this integral we find

α̂ ' 4M

b
−
z0
√
πΓ( q+1

2 )

ω2
0 b

q Γ( q2 )

(
1 +

B̃2
0

1− ω̃2
ϕ

)
. (55)

Again, the last expression generalizes the result found in
Ref. [54].

C. Plasma medium with ω2
p(r) = b0 e

−r/r0

In another example we consider a plasma medium with
a refractive index containing an exponentially decaying
term, given by [45]

n2(r) ' 1− b0e
−r/r0

ω2
0

f(r)
(

1 +
B̃2

0

1− ω̃2
ϕ

)
. (56)

Here for the optical metric we obtain

dt2 =
[
1− b0e

−r/r0

ω2
0

f(r)
(

1+
B̃2

0

1− ω̃2
ϕ

)][ dr2

f(r)2
+

r2

f(r)
dφ2
]
.

(57)
For the Gaussian optical curvature we find

K ' −2M

r3
+
b0 e
−r/r0(r − r0)

2 r r20 ω
2
0

(
1 +

B̃2
0

1− ω̃2
ϕ

)
. (58)

The deflection angle is found

α̂ ' 4M

b
− b b0K0(b/r0)

r0ω2
0

(
1 +

B̃2
0

1− ω̃2
ϕ

)
, (59)

where K0 is the zeroth order modified Bessel function of
the second kind. One can see that by setting B̃2

0 = 0, we
recover the result derived in [54].

D. Deflection of relativistic massive particles

We shall focus on the deflection of relativistic massive
particles in the presence of axion-plasmon medium. To
find the deflection angle for massive particles we proceed
as follows. First, by following the Refs. [54–56], one can
incorporate the refractive index of the medium in the
optical metric, hence we can write

dt2 → dσ2 = n2(r)

(
dr2

f2(r)
+
r2dφ2

f(r)

)
, (60)

in the last equation we have used Eq. (44) to introduce
the refractive index in the metric. Secondly, we use the
correspondence between the motion of photons in plasma
and massive particles i.e. we can identify the rest mass
of the particle with the frequency of the plasma, and the
energy of the particle with the photon frequency, hence
(with h̄ = 1)

ωp −→ m0, ω0 −→ E. (61)

For the refractive index we can write

n2(r) ' 1− m2
0

E2
∞
f(r)

(
1 +

B̃2
0

1− ω̃2
ϕ

)
. (62)

The relativistic particle with velocity v has energy

E∞ =
m0√
1− v2

, (63)
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as measured far away from the observer at spatial infinity.
In addition, let us assume that the particle has an angular
momentum given by

J =
m0v b√
1− v2

, (64)

here b is an impact parameter of the massive particle.
Combining Eqs. (62), (63) and (64), we find

n2(r) ' 1− (1− v2)f(r)

(
1 +

B̃2
0

1− ω̃2
φ

)
(65)

That is, we can recast the purely optical metric in pres-
ence of axion-plasmon medium in the equatorial plane
as

dσ2 =
[
1− (1− v2)f(r)

(
1 +

B̃2
0

1− ω̃2
ϕ

)][ dr2

f2(r)
+
r2dφ2

f(r)

]
.

(66)
The Gaussian optical curvature from the metric (66) is
computed after we perform a series expansion around
M/b, we get

K ' −
M
[
1 + v2 − (

B̃2
0

1−ω̃2
ϕ

)(1− v2)
]

r3
[
v2 − (

B̃2
0

1−ω̃2
ϕ

)(1− v2)
]2 , (67)

in leading order terms. Notice an interesting consequence
in the last equation in the limit v → 0 and B̃0 → 0,
yielding an apparent singularity in K. This apparent
singularity shows that, we need to restrict our analyses
only for relativistic particles, namely, the particles speed
belongs to the following interval 0 < v ≤ 1 (with c = 1),
while this also suggests that for nonrelativistic motions
one must develop a different or more general setup. For
the geodesic deviation having large radial coordinate R,
yields

lim
R→∞

κ(CR) → 1(
v2 − (

B̃2
0

1−ω̃2
ϕ

)(1− v2)
)
R
. (68)

Using the metric (66), for r = R held constant we find
that

lim
R→∞

dσ →

(
v2 − (

B̃2
0

1− ω̃2
ϕ

)(1− v2)

)
Rdφ. (69)

This leads to the expected condition

lim
R→∞

(
κ(CR)

dσ

dφ

)
= 1. (70)

To compute the deflection angle we need to use

α̂ = −
π∫

0

∞∫
b

sinϕ

[
−
M
[
1 + v2 − (

B̃2
0

1−ω̃2
ϕ

)(1− v2)
]

r3
[
v2 − (

B̃2
0

1−ω̃2
ϕ

)(1− v2)
]2

]
dS.

(71)

where we need to integrate over the optical domain with
the approximated surface element

dS '

(
v2 − (

B̃2
0

1− ω̃2
ϕ

)(1− v2)

)
drdφ. (72)

Finally, evaluating this integral we find

α̂ ' 2M

b

1 +
1(

v2 − (
B̃2

0

1−ω̃2
ϕ

)(1− v2)
)
 . (73)

If we set B̃2
0 = 0, we obtain the result earlier found in

Ref. [54]. Furthermore if we make the identification,

v2 −→ 1−
ω2
p

ω2
0

, (74)

we obtain the same result as previously derived in the
case of the deflection of light given in Eq. (36).

VI. AXION-PLASMON EFFECT ON THE
EINSTEIN RINGS IN THE WEAK FIELD

Let us now turn our attention and focus on the obser-
vational relevance of our results for the axion-plasmon
model. Toward this purpose we shall use the expression
for the deflection angles to estimate the size of the Ein-
stein rings using three plasma models. Furthermore we
can adopt the following setup: The BH, or the the lens L,
is located between the source S and the observer O, and
both S and O are located in the asymptotically flat re-
gion, i.e., at the distances much larger than the BH size.
As we will see below, the Einstein rings can be formed
due to the gravitational field of a BH when the source,
lens and observer are perfectly aligned. In general, by
construction, we can relate the observational angular co-
ordinates, or the image position θ, the source position β
and the light deflection angle α using the Ohanian lens
equation [57]

arcsin

(
DOL

DLS
sin θ

)
− arcsin

(
DOS

DLS
sinβ

)
= α̂(θ)− θ,

(75)
where DOL represents the observer–lens distance, DOS

represents the observer–source distance and DLS is the
distance from the lens to the source (see corresponding
figure in [57]). In the above equation the deflection angle
α̂ is expressed in terms of θ using the relation for the
impact parameter b = DOL sin θ. In the literature, how-
ever, there are more general solutions of the lens equation
(75), for example we can use [57]

DOS tanβ =
DOL sin θ −DLS sin(α̂− θ)

cos(α̂− θ)
(76)

In the general case, one can show that the values of θ,
which are solutions to the above equations, and provide
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information about the positions of the weak field images.
In the weak deflection approximation, both equations
yield [57]

β = θ − DLS

DOS
α̂. (77)

For the Einstein ring to form, we need to consider the
special case having β = 0, i.e., the source S lies on the
optical axis. It is easily seen that in the weak deflection
limit (α̂ � 1, β � 1), we can use the last equation to
compute the angular radius of the Einstein ring as follows

θE '
DLS

DOS
α̂(b). (78)

Here we have used the relation DOS = DOL +DLS pro-
vided the angular source position is β = 0.

In order to see the axion-plasmon effect on the Ein-
stein rings, let us take as an example the BH with mass
M = 4.31×106M� located at our galactic center Sgr A∗,
with an observer locate at the distance DOL = 8.33 kpc
from the Sgr A∗ (lens). Furthermore we shall assume the
following DLS = DOL/2 meaning that DOS = 3DOL/2.
Let us take, as a first example the case of homogeneous
plasma, to obtain the angular scale in the celestial sky.
To first order of approximation in the deflection angle
and using the relation b = DOL sin θ ' DOLθ, the bend-
ing angle in the hypothesis of small angles is

α̂(θ) ' 2M

DOLθ

(
1 +

1

1− ω2
p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)). (79)

Therefore, the typical Einstein ring radius of the lens
system in the weak deflection limit, according to Eq. (78),
is given by (Fig. 8)

ϑE =

√√√√√ 2M

DOL

[
1 +

1

1− ω2
p

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)]DLS

DOS
(80)

Considering for instance the case ω2
p/ω

2
0 = 0.3, B̃2

0 =

ω̃2
ϕ = 0.5, and using the approximation M/DOL ≈ 2.48×

10−11, we obtain ϑE ' 1.57 arcsec, which is larger than
the corresponding value for the Schwarzschild BH case
ϑSchE ' 1.18 arcsec. Although this is a small effect, in
principle, there is a possibility for detecting this axion
effect by observation of the rings. For nonzero axion dark
matter parameters, we find that there is a larger size of
the relativistic rings, compared to the Schwarzschild BH
ring. Let us also consider the model ω2

p(r) = z0/r
q, with

q = 1, then

α̂(θ) '
4M − z0

ω2
0

(
1 +

B̃2
0

1−ω̃2
ϕ

)
DOLθ

. (81)

yielding the Einstein ring radius

ϑE =

√√√√[4M − z0
ω2
0

(
1 +

B̃2
0

1− ω̃2
ϕ

)]
DLS

DOLDOS
(82)
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FIG. 8: The positions of the weak-field Einstein rings by
the BH surrounded by a homogeneous plasma (red curve),
Schwarzschild BH (black curve) and inhomogeneous power
law plasma (blue curve) and inhomogeneous exponential law
plasma (green curve). We have set ω2

p/ω
2
0 = 0.3, z0/ω

2
0 =

0.3[M ] B̃2
0 = ω̃2

ϕ = 0.5, b ∼ 20r0 and b0/ω
2
0 = 0.1. Here X

and Y are the angular celestial coordinates in the observer’s
sky.

Note that the quantity z is measured in units of the BH
mass. Taking for example, z0/ω

2
0 = 0.3 [M ], B̃2

0 = ω̃2
ϕ =

0.5, we obtain ϑE ' 1.09 arcsec, which is smaller com-
pared to the Schwarzschild BH. This means that the de-
flection angle and the size of Einstein rings depends on
the particular plasma frequency model. For the expo-
nential plasma model a closed form for the Einstein ring
is not possible to obtain, however, one can only approxi-
mate the numerical value. We can simplify the problem
by assuming in the exponential model b0 e

−r/r0 a scale
radius of kpc orders, say b ∼ 10 r0, yielding

α̂(θ) ' 4M

DOLθ
− 10 b0K0(10)

ω2
0

(
1 +

B̃2
0

1− ω̃2
ϕ

)
(83)

Taking b0/ω
2
0 ∼ 0.1 along with B̃2

0 = ω̃2
ϕ = 0.5, we find

ϑE ' 0.48 arcsec, which is also smaller compared to the
Schwarzschild BH.

VII. SHADOW IMAGES WITH INFALLING
GAS IN A PLASMA MEDIUM

Let us consider a rather simple accretion model which
consists of an infalling gas onto a BH in the presence of
axion-plasmon medium. Although, the realistic picture
is rather complicated and depends on a number of in-
gredients such as the size and the shape of the accretion
model, or the distribution of the magnetic fields around
the BH. We are going to use the numerical technique
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FIG. 9: Shadow images for a BH is a plasma medium and
in absence of plasma. Note that the shadow image does not
depend on the viewing angle. We have set ω2

p/ω
2
0 = 0.3,

z0/ω
2
0 = 0.3 [M ], B̃2

0 = ω̃2
ϕ = 0.5, Here X and Y are the

angular celestial coordinates in the observer’s sky.

known as the Backward Raytracing in order to find the
apparent shadow due to the infalling and radiation gas
[58–64]. The first quantity that we need to define the spe-
cific intensity Iν0 observed far away from the BH given

by the following expression [59]

Iobs(νobs, X, Y ) =

∫
γ

g3j(νe)dlprop, (84)

where g = νobs/νe is the redshift factor and νe gives the
photon frequency which is measured in the rest-frame of
the emitter. To calculate the total flux one can use the
relation [59, 65]

Fobs(X,Y ) =

∫
γ

Iobs(νobs, X, Y )dνobs. (85)

Th radiating gas is in a free fall so that its four-velocity
components are given by [59]

ute =
1

f(r)
, ure = −

√
1− f(r), uθe = uφe = 0. (86)

In order to compute the total flux we also need to de-
termine the relation between the radial and time compo-
nents of the photon four-velocity which is given by the
relation

kr = ±ktf(r)

√
f(r)

(
1

f(r)
− b2

r2

)
. (87)

The physical meaning of the signs +(−) in the above
equation is the following: The photon can either ap-
proach or recedes from the BH. Note that the impact
parameter b encodes the axion-plasmon effect and it reads

b = r

√
1

f(r)
−
ω2
p(r)

ω2
0

(
1 +

B̃2

1− ω̃2
ϕ

)
. (88)

We can also use the redshift function g which can be
calculated also by the relation [59]

g =
kαu

α
o

kβu
β
e

, (89)

In our accretion model we shall apply one more assump-
tion, namely we are going to use a monochromatic and a
1/r2 radial profile for the specific emissivity given by the
equation

j(νe) ∝
δ(νe − ν?)

r2
, (90)

in which δ is the Dirac delta function. We can express
the proper length in terms of the relation

dlprop = kαu
α
e dλ = − kt

g|kr|
dr. (91)

Finally, we can rewrite the total flux given by Eq. (85)
after we integrate the intensity over all the observed fre-
quencies, that is, we can write [59]

Fobs(X,Y ) ∝ −
∫
γ

g3kt
r2kr

dr. (92)
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We closely follow the numerical technique presented in
[61–63] and the resulting shadow images of the BH with
axion-plasmon effects are depicted in Fig. 9. In partic-
ular we have considered a uniform plasma medium and
the power law plasma medium. We can clearly see the
difference in the intensities as well as the shadow radii
compared to the vacuum case when seen by an observer
located far away. For the case of uniform plasma the ef-
fect is stronger. The difference in the intensities observed
far away from the BH is explained by the fact that the
deflection angle of light is affected by plasma. Since the
deflection angle increases for the uniform plasma, the in-
tensity will be smaller at infinity since more photons will
be captured by the BH. In the present work we have in-
tegrated numerically from the photon sphere, although
there is a small contribution, or practically a neglecting
effect, coming from the region between the horizon and
the photon sphere.

VIII. CONCLUSIONS

In this work, we investigated the axion-plasmon effect
on the optical properties of the Schwarzschild BH, which
consisted in observing the BH shadow and the effect of
the gravitational lensing. In particular, the interaction
between the axion fluid and the photon has been inves-
tigated in more detail.

It is shown that the size of the BH shadow decreases
with increasing axion-plasmon for the large observe dis-
tant, and interestingly, this was also shown earlier for the
case of an inhomogeneous plasma only in [42]. The size
of the shadow may be larger for a closer observer, but if
the observer is far from the BH, the shape of the BH’s
shadow will be smaller and also depends on the type of
plasma.

Our results seem to indicate that if one of the three
parameters (B̃2

0 , ω̃
2
ϕ, ω

2
p/ω

2
0) is varied and the two others

are held constant, the effects of a homogeneous plasma on
the radius of the photon shpere as well as on the radius
of the shadow of the BH are more pronounced than the
effects of an inhomogeneous plasma.

For a homogeneous plasma, the deflection angle in-
creases as the axion frequency, ω̃2

ϕ, increases (with the
other parameters being held constant) provided the mag-
netic field is not zero. If the latter is zero, the axion
frequency has no effect on the deflection angle, which re-
mains constant as ω̃2

ϕ is varied. Similarly, the deflection
angle increases as the magnetic field increases (with the
other parameters being held constant).

We have noticed that the Einstein ring radius depends
on the type of plasma surrounding the BH. If the plasma
is homogeneous, the Einstein ring radius is larger than
the corresponding radius for a Schwarzschild BH and if
the plasma is inhomogeneous the effect is reversed.

Considering the fact that the impact parameter de-
pends on the axion-plasmon coupling we have obtained
the shadow images using an infalling and radiation gas for
three plasma models. The strongest effect is observed for
the homogeneous plasma medium, which has a smaller
shadow radius and the intensity of the radiation observed
far away from the black hole is smaller and more appar-
ent. This is explained by the fact that the deflection
angle increases due to the axion-plasmon coupling. For
the case of inhomogeneous plasma model we find that the
effect on the electromagnetic intensity is very small com-
pared to the case of absence of plasma. In a future work,
we plan to consider the influence of the axion-plasmon on
the shadow and gravitational lensing of the spinning BH
in more detail and like to consider different cases related
to the plasma distributions.
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