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ABSTRACT ARTICLE HISTORY

This paper introduces the Selective Generalized Traveling Salesman Received 2 April 2019
Problem (SGTSP). In SGTSP, the goal is to determine the maximum Accepted 10 December 2019
profitable tour within the given threshold of the tour’s duration, which KEYWORDS

consists of a subset of clusters and a subset of nodes in each cluster Travelling Salesman; Routing
visited on the tour. This problem is a combination of cluster and node Problems with Profits;
selection and determining the shortest path between the selected Mathematical Formulation
nodes. We propose eight mixed integer programming (MIP) formula-

tions for SGTSP. All of the given MIP formulations are completely new,

which is one of the major novelties of the study. The performance of

the proposed formulations is evaluated on a set of test instances by

conducting 4608 experimental runs. Overall, 4138 out of 4608 (~90%)

test instances were solved optimally by using all formulations.

1. Introduction

Routing problems with profits are different from classical routing problems in that not all
nodes (customers, cities etc.) need to be served. Each node has an associated profit, and
the right set of nodes must be served to satisfy a certain number of side constraints while
maximizing the profit gained from the visited nodes. In the field of routing problems with
profits, the Travelling Salesman Problem (TSP) with Profits (TSPPs) indicates a set of
problems in which a single mobilized entity performs the operation. Depending on the
constraints and objective function considered in the problem, TSPPs are classified into
three categories [1]: the Orienteering Problem (OP) (or the Selective TSP), the Prize-
Collecting TSP (PCTSP), and the Profitable Tour Problem (PTP).

In the OP (or in the STSP), the goal is to determine which subset of nodes to visit and in
which order such that the total collected profit is maximized and a given maximum total
travel time is not exceeded [2]. This problem was first introduced by Tsiligirides [3]. For
extensive and comprehensive surveys on the OP, the papers of Vansteenwegen et al. [4] and
Gunawan et al. [5] are recommended.

In this paper, we address a generalization of the STSP problem family, a variant of the
Generalized TSP (GTSP) that we call the Selective GTSP (SGTSP). In this problem, nodes
are clustered into groups. Neither all clusters nor all nodes need to be visited, but only
one node within each cluster may be visited. A profit is associated with each node and
collected only if served. The aim is to maximize the total profit collected within a given
time limit. The literature also studies a problem called the Generalized OP (GOP), in
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which each node is assigned a set of scores with respect to a set of attributes (for example,
a tourist trip-designing problem that considers attributes such as natural beauty, histor-
ical significance, cultural and educational attractions, and business opportunities [6];).
Wang et al. [7] considered the objective function of the GOP to be a non-linear function
of these attributes, demonstrating that the generalization of the OP is done in terms of
having multiple goals, and the objective function is a non-linear combination of the
attribute scores. This type of GOP was first studied by Wang et al. [8]. Silberholz and
Golden [9] and Pietz and Royset [10] have published recent papers as well. However, in
our study, the SGTSP is a problem in which each node is associated with only one score
(profit value) and this generalization is done in such a way that the TSP is generalized to
the GTSP (see [11-17]). Interested readers can refer to the generalized minimum
spanning tree problem ([18,19]) and generalized vehicle routing problem [20] which
are related with GTSP. We consider only a single objective function with a linear
combination of profits. In a recent study, Archetti et al. [21] studied the Set OP (SOP),
a generalization of the OP in which nodes are grouped in clusters, a profit is associated
with each cluster, and the route duration does not exceed a given time limit. The objective
is to find the route that maximizes profit. The profit of a cluster is collected only if at least
one node from the cluster is visited. They proposed a mathematical formulation of the
problem and a matheuristic algorithm. Unlike in Archetti et al. [21], the objective
function in this study is the sum of node profits visited on the route.

By studying this problem, the practical applications can be analysed and formulated as
variants of the SGTSP. Examples of such applications are mainly related to the distribu-
tion of mass products, as in the case of a travelling salesman without enough time to visit
all nodes. He knows the number of sales to each node and wants to maximize his total
sales while keeping the travel limited to a specific unit of time [3]. In particular, consider
the case where nodes belong to different clusters (country, city, local area, region etc.).
Instead of having to serve all nodes belonging to the cluster in the SGTSP the carrier may
choose to serve only at least one node from the cluster. By this way, within a certain time
limit, the nodes that will maximize the benefit are visited and hence the total profit will be
maximized. Other problems that might fit into this scope are Tourist Trip Design
Problem, Routing of the Sales Representatives and Waste Collection. In the tourist trip
design problem [22], it is often impossible to visit everything for the tourists visiting a city
or region. Thus, they have to select what they believe to be the most valuable attractions.
It is difficult to define a tour plan in the available time span in order to visit these
attractions. In tourist applications the time required to visit a certain attraction point
plays an important role in the selection of points. In the routing of field workers and sales
representatives (e.g., sales representatives of food retailers or of the pharmaceutic indus-
try), they have to visit the most promoting doctors or work places belonging to their own
fields to fill their sales quota within the daily working time limit. Same as, in waste
collection a vehicle or a fleet of vehicles visit a set of collection points within a time limit
such that to maximize the total benefit.

The main contributions of the paper are in twofold. First, in the literature, two types of
GTSP are studied ([23-25]). In the first type, only a single node may be visited, and in
the second, at least one node is visited in each cluster on the tour. Generalized variations of
OPs in which the nodes are categorized into clusters can be examined using the two headings
above. In the literature there is only a study presented about the generalized variations of OP
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[26] which is called as Set OP (SOP). Unlike the definition of SOP, profits are associated with
nodes rather than clusters, to be able to examine the problem in two sub-headings mentioned
above. Best of the authors’ knowledge there is no study on the generalized variations of OP in
which the profits are associated with nodes. In case the problem is defined in this way, the
SGTSP can be examined in both categories where only a single node may be visited and at
least one node is visited in each cluster on the tour. The differences between SGTSP and the
problem addressed by Archetti’s study are explained in detail in Section 4.1. The second
contribution of this paper is that it proposes eight new mathematical formulations for the
SGTSP using different kinds of auxiliary variables. The main difference between these
formulations is the interpretation of the meaning of the auxiliary variables used when writing
the subtour elimination constraints in different structures. Mathematical models are classified
as being sequence-based (SB), time-based (TB), node-based (NB), and flow-based (FB) due to
the meanings of the auxiliary variables used.

The remainder of this paper is organized as follows. In the second section, we give the
formal definition of the SGTSP. Section 3 contains the new mixed integer programming
formulations of the SGTSP. We show in Section 4 that the SGTSP and its formulations
can be reduced to the special case of other problems. In Section 5, we do numerous
computational experiments of the proposed MIP formulations on the benchmark
instances. The paper concludes in Section 6 with some remarks and further suggestions.

2. Definition of the SGTSP

The SGTSP can be defined with the aid of a directed graph G = (V, A) with vertices
(nodes) V = {1,2,...,n}and connecting arcs A = {(i,j)|i,j € V,i#j}. The vertices are
grouped into k mutually exclusive and exhaustive vertex sets (clusters) in advance, such
asV =ViUV,U---U Vpwith V, N V; = 0, Vp, 1, p#I. Connecting arcs are defined only
between vertices belonging to different sets (clusters); there are no intra-set arcs. Each
vertex j € Vhas an associated nonnegative profit s;>0 that is assumed to be entirely
additive and each defined arc (i,j) € A has a corresponding nonnegative travel time
t;i> 0. The starting/ending point is vertex 1, which is the element of V; = {1} and fixed.
Not all vertex sets (clusters) can be visited since the available time is limited to a given
time budget T',,x. The goal of the SGTSP is to determine a tour limited by T}, that visits
exactly one vertex within some of the vertex sets in order to maximize the total collected
profit. Figure 1 displays an example SGTSP defined on a directed graph with 10 vertices
and five vertex sets. The lines illustrate a feasible tour that visits only four vertex sets.

Making use of the notation introduced above, the SGTSP can be formulated as an
integer programming problem.

3. SGTSP mixed integer linear programming formulations

In this section we first present a general formulation for SGTSP, then specify the explicit
forms of these models and proposed eight new formulations of the problem.

In SB formulations, the nodes are visited according to their order on a tour. TB
formulations depend on the time distance between the nodes on a tour. Auxiliary variables
are defined in a formulation to avoid sub-tours and capacity (time limit, load limit, etc.)
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Figure 1. Example feasible SGTSP tour.

excess. If a formulation has additional auxiliary decision variables, it may be classified with
respect to the new decision variables as being NB if the additional variables are relative to
the nodes of the graph and FB if the new variables are relative to the arcs of the graph.
Furthermore, the definition of auxiliary variables (both in NB and FB) is slightly different
depending on where it is defined. If an auxiliary variable is defined between nodes, it is
deemed to have a Node to Node (N_N) definition, and similarly, if an auxiliary variable is
defined between clusters, it is considered to be Cluster to Cluster (C_C) defined. For
instance, a NB auxiliary variable used in a formulation may be defined between nodes or
between clusters. Likewise, a FB auxiliary variable used in a formulation may be defined
between nodes or between clusters. Figure 2 shows the different formulations proposed in
this paper, and gives their corresponding abbreviations.

All proposed formulations have O(n?) binary decision variables and constraints. All
restrictions and objective functions in the formulations have linear relations. The para-
meters and the definition sets used in the formulations are given in the next sub-section.

3.1. A general formulation

We define the related sets, parameters, and decision variables as follows:
Symbols:
n is the number of nodes.
i and j are the indices of nodes i,j = 1,2, .....,n.
k is the number of clusters.
p and [ are the indices of clusters p,I = 1,2, ...., k.
Sets:
A ={(i,j)|i,j € V,i#j} is the set of arcs.
V ={1,2,...,n}is the set of nodes.
V7 is the starting cluster including only the depot.
V,, is the set of cluster p.
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Sequence-based Time-based
Formulation Formulation
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Auxiliary Auxiliary Auxiliary Auxiliary
Variable Variable Variable Variable
Auxiliary Auxiliary Auxiliary Auxiliary
Variable Variable Variable Variable
> Definition —> Definition —> Definition > Definition
Between Nodes Between Nodes Between Nodes Between Nodes
(SNN-N) (SFN-N) (TNN-N) (TFN-N)
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Auxiliary Auxiliary Auxiliary Auxiliary
Variable Variable Variable Variable
> Definition Definition Definition > Definition
Between Clusters Between Clusters Between Clusters Between Clusters
(SNC-C) (SFC-C) (TNC-C) (TFC-C)
N N N N

Node-based

Flow-based

Figure 2. Mathematical formulation hierarchy.

Let V be partitioned into the mutually exclusive and non-empty subsets V1,V5,V3, .
Vi, each of which represents a cluster of nodes.

Parameters:

s; is the profit (score, revenue, gain, etc.) of node j.

tij is the travel time between nodes i and j.

Tnax is the maximum travel time.

Decision variables:

.o

o1 if arc(i, j)is included in the tour of a vehicle
7] 0 otherwise.

With the above definitions, the general formulation for the SGTSP is given as:

k
Maximizeg E E SiXij

(1)
p=1 i€V} jeV\(V,U V1)
The objective function (1) is to maximize the total collected profit.
n
lej =1 (2)
=2

Constraint (2) ensures that the tour starts from node 1.
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n
inl =1 (3)
i=2
Constraint (3) ensures that the tour ends at node 1.

>N x<1p=2, ..k (4)

i€Vy jeV\V,
YN xi<ip=2, .k (5)
i€V\V, jEV,
Constraints (4) and (5) guarantee that each cluster is visited at most once.
k
z Z Z tijxij S Tmax (6)
p=1 i€V, jEV\V,

Constraint (6) ensures that the total travel time does not exceed the time limit T),4,.

ZZ)CU—ZZXJIZO p:2, ...... ,k (7)

igV,jeV, i€V, jev,
S e Ym0 e p=2 ok ®
i€V\V, i€V\V,

Constraints (7) and (8) are flow conservation constraints which can be used alternatively.
Only one of these constraints is enough to allow the same node to be exited when a node
is visited in a cluster.

and

Subtour elimination constraints + Bounding constraints

Model formulations of the SGTSP will differ from each other with respect to the subtour
elimination and bounding constraints.

3.1.1. Sequence-based formulations
3.1.1.1. Formulation SNN-N: node-based auxiliary variable defined between nodes.
We propose NB MIP formulation for the SGTSP by defining a new auxiliary variable.
In addition to the decision variables defined above, we define the following auxiliary
variable:
u; is the order in which node i is visited after the depot, otherwise u; is equal to zero.
With the above definition, the SNN-N formulation of the SGTSP is given as:
Objective function (1)
Subject to Constraints (2)-(8)
and

wi— i+ kg + (k—2)x; <k—1 VieV, Yie V\(V,UV)) p=2, ...k (9)
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u; > x1;+2 iji Vie Vp p:2, ,k (10)
JEVA(V,UVy)

u; < (k— Dy + (k—2) Z xj—(k=3)xy; VieV, p=2, .,k (11
JEV\(V,uV1)

w>0 i=2, ..n (12)

x;€{0, 1} VieV, YieV\V, p=1, ..k (13)

Constraints (9) prevent subtours between clusters from using nodes. Constraints (10)
and (11) are bounding constraints that limit the order of clusters. Constraints (12) are
non-negativity constraints. Constraints (13) are binary constraints.

3.1.1.2. Formulation SNC-C: node-based auxiliary variable defined between clusters.
We propose another NB MIP formulation for the SGTSP by defining a new auxiliary
variable. The difference with Formulation SNN-N is in the subtour elimination and
bounding constraints, which prevent subtours between clusters.

In addition to the decision variables defined above, we define the following auxiliary
variable:

u, is the sequence from the depot to cluster p, otherwise u, is equal to zero.

With the above definition, the SNC-C formulation of the SGTSP is given as:

Objective function (1)

Subject to Constraints (2)-(8)

and
up —ul+kzzxij+(k—2)zzxﬁ <k—1 p#l pl=2, ...k (14
i€V, jev i€V, jev
up > lej +ZZ Zxﬁ p=2, ..,k (15)
j€Vy i€V, jeV\(V,U V1)

up < (k=) xn+(k=2)Y Y xi—(k=3)> x; p=2, ..k (16)

i€V, i€V, jeV\(V,U V1) j€v,
uy >0 p=2, ..k (17)
xj€{0, 1} VieV, VjeV\V, p=1, ..,k (18)

Constraints (14) prevent subtours between clusters. Constraints (15) and (16) are
bounding constraints that limit the order of clusters. This limitation is realized by the
k parameter in Constraints (16). Constraints (17) are non-negativity constraints.
Constraints (18) are binary constraints.
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3.1.1.3. Formulation SFN-N: flow-based auxiliary variable defined between nodes. We
propose FB MIP formulation for the SGTSP by defining a new auxiliary variable.

In addition to the decision variables defined above, we define the following auxiliary
variable:

The f;; variable refers to a sequence from node i to nodej in case there is a transition
between nodes i and j.

With the above definition, the SEN-N formulation of the SGTSP is given as:

Objective function (1)

Subject to the Constraints (2)-(8)

and
fi=xy j=2, ..n 1)
Z Z fi— Z Zﬁiz Z iji p=2, .,k (22)
i€V, jeV\V, JEV\V, i€V, JEV\V, i€V,
fi<kxj VieV, VjeV\V, p=1, ..,k (23)
fi=0 VieV, VieV\V, p=1, ...,k (24)
xj€{0, 1} VieV, VieV\V, p=1, ..,k (25)

Constraints (21) allow the starting arc to begin at node 1. Constraints (22) prevent
subtours and allows the sequence number to increase cumulatively. Constraints (23)
are bounding constraints that guarantee if arc (i,j) is not on any route, then the
corresponding variable will be zero (f;; = 0). The f; variable can be a maximum of k
since there are kclusters in the problem. Constraints (21), (22), and (23) allow the
sequence numbers of the selected arcs to have a value between 1 and k. Constraints
(24) are non-negativity constraints. Constraints (25) are binary constraints.

3.1.1.4. Formulation SFC-C: flow-based auxiliary variable defined between clusters.
We propose another FB MIP formulation for the SGTSP by defining a new auxiliary
variable. Formulation SFC-C is different due to its subtour elimination and bounding
constraints, which prevent subtours between clusters.

In addition to the decision variables defined above, we define the following auxiliary
variable:

The f,; variable refers to a sequence from cluster p to cluster/ in case there is
a transition between clusters p and .

With the above definition SFC-C formulation of the SGTSP is given as:

Objective function (1)

Subject to the Constraints (2)-(8)

and

fip= lej p=2, ..k (26)

JjEV)
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k k
D= o= D D m p=2 ik @7)
I=1 I=1

> o i€V\V, j€V,
kY N xg p#El p=1, ..k I=1, .k (28)
i€V, jeV)
f1>0 p#El p=1, ..k =1, ..,k (29)
xj€{0, 1} VieV, VieV\V, p=1, ..,k (30)

Constraints (26) allow the starting cluster to begin at node 1. Constraints (27) prevent
subtours between clusters and allows the sequence number to increase cumulatively.
Constraints (28) are bounding constraints that guarantee if arc (i, j) is not on any route,
then the corresponding variable will be zero (f,= 0). Thef;variable can be a maximum of
k since there are k clusters in the problem. Constraints (26), (27), and (28) allow the
sequence numbers of the selected arcs to have a value between 1 and k. Constraints (29)
are non-negativity constraints. Constraints (30) are binary constraints.

3.1.2. Time-based formulations
3.1.2.1. Formulation TNN-N: node-based auxiliary variable defined between nodes.
We propose NB MIP formulation for the SGTSP by defining a new auxiliary variable.
The u; variable refers to the time it takes to travel from the depot to node i.
With the above definition, TNN-N formulation of the SGTSP is given as:
Objective function (1)
Subject to the Constraints (2)-(8)
and

u — uj + (Tmax + t,])x,] + (Tmax — t])x], S Tmax Vl € Vp V_] c V\(VP U Vl)

p=2, ..,k (31)
u; > Z tjin,' Vie Vp p= 2, ,k (32)
JEV\V,

u < Z (Tomax — ty)x Vi€V, p=2, .k (33)
JEV\V,

Ui < Trax — (Tmax — tl,-)xl,- Vie Vp p= 2, ,k (34)

w>0 i=2, ..n (35)

x€{0,1} VieV, VjeV\V, p=1, ..k (36)

Constraints (31) prevent subtours between clusters using nodes. Constraints (32), (33),
and (34) are the bounding constraints. These constraints limit the arrival time to the
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nodes. Constraints (35) are non-negativity constraints. Constraints (36) are binary
constraints.

3.1.2.2. Formulation TNC-C: node-based auxiliary variable between clusters. We pro-
pose another NB MIP formulation for the SGTSP by defining a new auxiliary variable.
The difference between this and Formulation TNN-N is in the subtour elimination and
bounding constraints, which prevent subtours between clusters.

In addition to the decision variables defined above, we define the following auxiliary
variable:

The u, variable refers to the time from the depot to cluster.

Given the above definition, TNC-C formulation of the SGTSP is given as:

Objective function (1)

Subject to the Constraints (2)-(8)

and
up — U + Z Z (Tmax + tij)xij"‘z Z (Tmax - tji)xji STmax Pil P7l = 27 ceey k
i€V, jev; i€V, jev;
(37)
up = > Y iy p=2, ..k (38)
igV,jev,

Up < Z Z (Tmux — tij)xij p= 2, . k (39)

i€VyjeV,

Uy < Toax — Z (Topax — i) p=2, ...k (40)
i€V,

uy>0 p=2, ..k (41)

xj €40, 1} VieV, VieV\V, p=1, ..,k (42)

Constraints (37) prevent subtours between clusters. Constraints (38), (39), and (40) are
the bounding constraints. These constraints limit the arrival time to the clusters.
Constraints (41) are non-negativity constraints. Constraints (42) are binary constraints.

3.1.2.3. Formulation TEN-N: flow-based auxiliary variable defined between nodes. We
propose FB MIP formulation for the SGTSP by defining a new auxiliary variable.

In addition to the decision variables defined above, we define the following auxiliary
variable:

fij variable refers to time from node i to nodej in case there is a transition between
nodes i and j.

With the above definition, TFN-N formulation of the SGTSP is given as:

Objective function (1)

Subject to the Constraints (2)-(8)

and
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hi=tjxy j=2,..,n (43)

S H-DD =D iy p=2, ..k (44)
i€V, jeV\V, JEV\V, i€V, i€V, jeV\V,

fi < Tpax x5 VieV, VjeV\V, p=1, ..,k (45)

fi=0 VieVv, VjeV\V, p=1, ..k (46)

xj€{0, 1} VieV, VjeV\V, p=1, .k (47)

Constraints (43) allow the starting arc to begin at node 1. Constraints (44) prevent
subtours and allows the time to increase cumulatively. Constraints (45) are bounding
constraints that guarantee if arc (i, j) is not on any route, then the corresponding variable
will be zero (fij = 0). The f; variable can be a maximum of T},,,, value. Constraints (46)
are non-negativity constraints. Constraints (47) are binary constraints.

3.1.2.4. Formulation TFC-C: flow-based auxiliary variable defined between clusters.
We propose another FB MIP formulation for the SGTSP by defining a new auxiliary
variable. The difference with ‘Formulation TEN-N’ is in the subtour elimination and
bounding constraints that prevent subtours between clusters.

In addition to the decision variables defined above, we define the following auxiliary
variable:

The f, variable refers to the arrival time from cluster p to cluster [ in case there is
a transition between clusters p and [.

Given the above definition, the TFC-C formulation of the SGTSP is given as:

Objective function (1)

Subject to the Constraints (2)-(8)

and

fip = Ztljxlj p=2, .,k (48)

€V,

k k
Zﬁ)l_Zﬁ :Z Z tijxi]- p:2, ,k (49)
I=1 I=1

= = i€V, jeV\V,
fr S Tmax Y x5 p#l p=1, ..k I=1, ..k (50)
i€V, jev
f=0 p#Fl p=1, ..k I=1, ..k (51)
xj€{0, 1} VieV, VjeV\V, p=1, ..,k (52)

Constraints (48) allow the starting cluster to begin at node 1. Constraints (49)
prevent subtours between clusters and allows the time to increase cumulatively.
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Constraints (50) are bounding constraints that guarantee if the arc (i,j) is not on
any route, then the corresponding variable will be zero (f, = 0). The f,; variable can
be a maximum of T,,,. Constraints (51) are non-negativity constraints. Constraints
(52) are binary constraints.

All Node-Based formulations (SNN-N, SNC-C, TNN-N, TNC-C) use Miller-Tucker-
Zemlin (MTZ) [27] related/based sub-tour elimination constraints. And all Flow-Based
formulations (SFN-N, SFC-C, TFN-N, TFC-C) use Gavish-Graves (GG) [28] related-
based sub-tour elimination constraints. All sub-tour elimination constraints are adapted
for the SGTSP and all bounding constraints are proposed in this study.

The number of continuous/binary variables and constraints as a function of n (number
of nodes) and k (number of clusters) for each formulation are given in Table 1.

4. Special cases of the proposed formulations

In this section, it is shown that the formulations of the Generalized Routing Problems
(SOP, GTSP) being studied can be obtained by making simple changes in the objective
function and the constraints of the formulations proposed for the SGTSP. Since these
changes are made in the general formulation of the SGTSP given in (1)-(8), these updates
are valid for all proposed formulations.

4.1. SOP

In the study conducted by Archetti et al. [21], SOP was introduced. SOP groups nodes
into mutually exclusive clusters and associates with each profit that may only be
collected if at least one node from the cluster is visited. SOP aims to find the route
that maximizes the profits collected so that it does not exceed a certain threshold of the
tour’s duration. The main difference between SGTSP discussed in this study and SOP
definitions is that a profit is associated with each cluster in SOP while a profit is
associated with each node in SGTSP. It is sufficient to visit at least one node from the
cluster in order to get a profit from the cluster in the SOP, whereas in SGTSP, only the
profit of the visited node is collected.

The SOP can be solved with the mathematical model obtained by making the follow-
ing changes to the general formulation presented in Section 3.1 for SGTSP. Before we
present the new constraint and objective function to be added to the general formulation,

Table 1. The size of each formulation.

Formulation # of Continuous Variables # of Binary Variables # of Constraints
SFC-C 'S n’ k* + 5k+n + 3
SNC-C k n k? + 5k+n + 3
SFN-N n? n’ n? + 4k+2n+3
SNN-N n n n? + 3n+3k+3
TFC-C K n’ K> + 5k+n + 3
TNC-C k n’ K> + 6k+n + 3
TFN-N n? n? n? + 4k+2n+3
TNN-N n n’ n? + 4n+3k+3
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it is necessary to define a new parameter and a decision variable:

¥p: binary variable equal to 1 if cluster p is visited, and 0 otherwise,

sp: profit of cluster p.

In order to find the optimal solution for the SOP, the following objective function is
used instead of objective function (1) given in the general formulation for SGTSP.

k

Maximize Z SpYp (53)
=2

Additionally, the new constraints below must be added to the formulations:

Vp < Z Zx,j,p:Z,...,k (54)

ieV\V, jeV,

¥ €4{0,1},p=2,...,k (55)

4.2. GTSP

There is a variant of the TSP known as the GTSP in which a tour does not visit all of the
nodes since set V of nodes is divided into k clusters, V3, ..., Vi with ViU ... U V. = Vand
V, N V;=0if p # L The objective is to find a minimum length tour that passes through
exactly one node from each cluster, V.

When the SGTSP for the large T,,,,, value is able to visit all clusters is given, the traveller
will visit all clusters to maximize its profit. In order to solve GTSP with the formulations of
the SGTSP, the T, value in constraint (6), which limits the tour time, must be sufficiently
large or this constraint can be omitted. By defining a new parameter, c;, the cost of
travelling from node i to j, the new objective function to solve the GTSP is given below.

k
Minimizezz Z CijXij (56)
p=1 iV, ey,

Instead of constraints (4) and (5) in the general formulation for SGTSP, constraints (57)
and (58) allow each cluster to be visited and can be used to solve GTSP.

>N x=1p=2,..k (57)

i€Vp jeV\V,

Yo xmi=1p=2,.k (58)

i€V\V, j€Vp

5. Analysis of results
5.1. Discussion of formulation structure

The proposed formulations are discussed in terms of suitability for triangle inequality
and special cases in the problem data set. If triangle inequality is not ensured in the time
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matrix of the problem, sub-optimal solutions may be obtained. The TNN-N and TNC-C
models proposed above can give a sub-optimal solution in a problem data set where
triangular inequality is violated.

5.1.1. Triangle inequality
Constraints (32) and (33) given above for the Formulation TNN-N model for the SGTSP
can be reformulated as follows:

u; > txy; + Z (tlj + tj,-)xj,- Vie Vp p= 2, .., k (59)
JEVA(V,UV))

u; < (Tmax — til)x,-l + Z (Tmax — tij — tjl)x,»j Vi e Vp p= 2, ., k (60)
eV

Similarly, constraints (38) and (39) given above for the Formulation TNC-C model for
the SGTSP can be reformulated as follows:

Up > Z tijx1+ Z Z (tli + tij)xij p=2, .., k (61)

€V, igV,jev,
i#1

u, < Z (Timax—tin )% + Z Z (Tmax — tij — tj1)x; p=2, ..,k (62)

i€V, i€V, j& Vp
j#1

Constraints (59), (60), (61), and (62) are tighter and thus improve the linear relaxation
values of the model. It is obvious that models with better linear relaxation values can be
solved in a shorter time [29]. However, these constraints do not guarantee an optimal
solution when the problem data does not conform to the rule of triangular inequality.
Therefore, in the case that these constraints are used, whether the rule of triangle
inequality has been violated should be considered. The problem of the triangular inequal-
ity violation rule is explained in the following example (Figure 3):

In any feasible solution, either the first or second term will have the value in constraints
(59). In other words, any node i will be passed directly either from starting node 1 (x1; = 1)
or from another node j (xj; = 1). In case there is a transition from starting node 1 to node i,
the u; > t;; term in constraints (59) become valid. If there is a transition from any node j,

Figure 3. Triangle inequality example.
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the u; > t); + t;term becomes valid. If xj; = 1, then t1; + t;; < ty; if the triangle inequality
generated by Ikj nodes is not satisfied. Thus, the constraint u; > t; + t;; > tix + tij + t;;
becomes valid, and this constraint prevents visiting node i through the more profitable
node k in a shorter time, leading to a sub-optimal solution. In the case of xj; = 1, the
satisfaction of triangle inequality (i.e., 1; + tj; < t1;), which is generated by the Iji nodes, is
not essential. Similar explanations can be applied to constraints (61) of Formulation TNC-
C. Considering constraints (60) of Formulation TNN-N and constraints (62) of
Formulation TNC-C, the transition from node i to either starting node 1(x;; = 1) or
another node j (x;; = 1) will occur. Sub-optimal solutions do not arise when the procedures
described above regarding triangle inequality are applied to these constraints. As a result,
when this special case is considered, it is important to satisfy the rule of triangle inequality
only between the nodes and the depot. This special case is not encountered in all of the SB
formulations and TB formulations of the SGTSP with an FB auxiliary variable because
triangle inequality depends on the time matrix of the problem. The reason that the SB
formulation approach is unaffected by this situation is that the nodes are sorted on the tour
without using time values, unlike for TB formulations.

5.1.2. Special cases in problem data

In the case that nodes have the same coordinates, the subtour elimination constraints
(constraints (31) and (37)) of the TB formulations (TNN-N and TNC-C) are unable to
prevent subtours. For example, constraints (31) are written for both (i,j) and (j,1)
such thatu; — uj + (Toax + )X + (Tomax — 4i)%ji < Trax and uj — i + (Tyax + ti)x;i+
(Tmax — tij)Xij < Tyax. If the coordinates of nodes i and j are the same, then the time to
travel between nodes is equal to zero, hence, t;; = t; = 0. Constraints (31) then become u; —
Uj + TomaxXij + TmaxXjii < Tonax and 1 — v + TpaxXji + TpaxXij < Tax. In this situation,
either x; or xj is equal to 1. This concludes u; —u; < 0 and u; — u; < 0. These two
inequalities will be valid if and only if 0 < u; = u; < Tiex. According to constraints (4)
and (5), each node must be visited once at most. Due to the objective function’s maximization
structure, the formulation will prefer to visit as many nodes as possible within the T,,,, value.
In the case that nodes i and j (which have identical coordinates but different profits) are
visited in a tour without a subtour, the total tour time may exceed the T,,,, value. However, it
will be more profitable to visit those nodes within a subtour, and this does not change the
total tour time. In conclusion, if the problem data has identical nodes, then the optimal
solution (obtained by TNN-N and TNC-C formulations) may include subtours for each
identical node. The disadvantages of these formulations can be prevented by
combining the identical nodes into a node with the total profits of these nodes.

5.2. Computational analysis

In this section, we present the computational results of the tests we made in order to
evaluate the performance of eight formulations. These formulations are coded in OPL
and solved using the ILOG CPLEX 12.6 on an Intel Core i7-4770 3.4 GHz (8 cores)
processor with 8 GB (1600 MHz) of RAM. All experimental runs are limited to three-
hours (10,800 seconds). CPLEX is run in parallel mode using up to 8 threads. In the
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following section, we describe how instances are generated for the SGTSP and the
computational results are provided in Section 5.2.2.

5.2.1. Test problems

We used two sets of problem instances for the computational experiments. The instances
in these sets were generated through an adaptation of the existing instances for the
Generalized Vehicle Routing Problem (GVRP) library [26]. Each set has 72 problems.
The first set is composed of medium-sized instances and derived using the A, B and
P instances in the Capacitated Vehicle Routing Problem (CVRP) library with the number
of vertices being anywhere from 16 to 101. The second set consists of larger-sized
instances derived from the M and G instances in the CVRP-library, encompassing 101
to 262 vertices [26].

The test instances used in the SGTSP experiments have the same number of nodes,
clusters, node coordinates and cluster sets as in the GVRP test instances. The node
demands in the GVRP instances correspond to the node profits in the SGTSP instances.
Some of the problem data has nodes with identical coordinates. As indicated in Section
5.1.2, subtour elimination constraints in TNN-N and TNC-C formulations are unable to
prevent subtours. To overcome this problem, nodes with the same coordinates are
differentiated randomly. Each test instance is solved with four different T,,,, values,
100, 200, 300, and 400. In the total we have 576 (4*2*72) test instances which are available
at http://www.baskent.edu.tr/~bkececi/userfiles/file/SGTSP/Instances.zip.

5.2.2. Results

This section comparatively investigates the performances of the eight mathematical
formulations. We analyse computational results using the best upper bound value,
CPU time (seconds), the number of optimal solutions found and the best integer
objective value averaged over all instances for each test problem. The best upper bound
value is the best objective function value of the LP relaxation during branch-and-cut
procedure. The best integer objective value is the highest objective function value of the
integer feasible solutions. Figure 4 summarizes the computational results of 4608 (576*8)
runs. The values (average or total) obtained according to the performance indicators
given above as a result of all experiments are shown in Figure 4. All solution values are
available at http://www.baskent.edu.tr/~bkececi/userfiles/file/SGTSP/Solutions.zip.

As it is seen in Figure 4, overall evaluation SEN-N and TEN-N seem outperforming to
the other formulations according to all indicators. The models were compared using
these values in detail from different perspectives. Firstly, in Table 2, SB and TB formula-
tions were evaluated by comparing N_N and C_C. When the values in Table 2 were
obtained, the averages (sum for #OptSol indicator) of the FB and NB formulations were
taken. For example, 1329.4 was calculated by taking the average of the values obtained
from the SFC-C and SNC-C formulations. The values in Table 2 show that all formula-
tions are close to each other according to the Avg. BestInt and Avg. BestUB criteria.
When the SB formulations were evaluated, it was found that the Avg. CPU Time of the
C_C formulations (SNC-C and SFC-C) was smaller than the average of N_N formula-
tions (SNN-N and SFN-N). However, when TB formulations were evaluated, there was
no difference between these values. 11 more optimal solutions were found by the SB
formulations using the C_C auxiliary variable definition (SNC-C and SFC-C
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Figure 4. Results of performance indicators.

formulations) than were obtained using the N_N auxiliary variable definition (SNN-N
and SFN-N formulations). However, this result has been otherwise achieved for TB
formulations. Three more optimal solutions were found by the TB formulations using
the N_N auxiliary variable definition (TNN-N and TFN-N formulations) than were
obtained using the C_C auxiliary variable definition (TNC-C and TFC-C formulations).

In Table 3, SB and TB formulations are evaluated in comparison with the definition of
FB and NB auxiliary variables. When the values in Table 3 were obtained, the averages of
C_C and N_N formulations (sums for #OptSol indicator) were calculated. For example,
a value of 1065.0 was calculated by taking the average of the values obtained from the
SFC-C and SFN-N formulations. The values in Table 3 show that all formulations were
close to each other according to the Avg. BestInt and Avg. BestUB criteria. The number

Table 2. Formulation comparison of SB vs. TB and N_N vs. C_C.

Avg. CPU Time (sec.) # Opt. Solution Found Avg. Best Integer Objective Value Avg. Best Upper Bound Value

cC N_N cC N_N cC N_N CcC N_N
SB 11,3294  1,490.7 1,034 1,023 467.0 464.1 481.0 481.8
TB 12634 12620 1,039 1,042 466.7 465.8 479.5 479.7
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Table 3. Formulation comparison of SB vs. TB and NB vs. FB.

Avg. CPU Time (sec.) # Opt. Solution Found Avg. Best Integer Objective Value Avg. Best Upper Bound Value

FB NB FB NB FB NB FB NB
SB 1,065.0 1,755.1 1,062 995 465 466.1 480.3 482.4
TB  1,036.1 1,489.3 1,061 1,020 466.2 466.3 478.2 481.0

of optimal solutions found through formulations (SFC-C and SEN-N, TFN-N and TFC-
C) defined by FB auxiliary variable was higher than the formulations defined by the NB
auxiliary variable. Similarly, according to the Avg. CPU Time indicator, it may be seen
that the formulations defined by the FB auxiliary variable obtained better results than the
formulations defined by the NB auxiliary variable.

In Table 4, the C_C and N_N formulations are compared with the definitions of FB and
NB auxiliary variables. When the values in Table 4 were obtained, the averages of SB and
TB formulations (sums for #OptSol) were calculated. For example, a value of 1101.4 was
obtained by taking the average of the values obtained from the SFC-C and TFC-C
formulations. The values in Table 4 show that all formulations are close to each other
according to the Avg. BestInt and Avg. BestUB criteria. The definition of FB auxiliary
variables in both of C_C and N_N formulations provided a more optimal solution in
a shorter time than NB did. 37 more optimal solutions were found by the C_C formula-
tions using the definition of FB auxiliary variables (SFC-C and TFC-C formulations) than
were obtained by the definition of NB auxiliary variables (SNC-C and TNC-C formula-
tions). Similarly, 71 more optimal solutions were found by the N_N formulations obtained
using the definition of FB auxiliary variables (SFN-N and TEN-N formulations) than were
obtained by the definition of NB auxiliary variables (SNN-N and TNN-N formulations).

Finally, in Table 5, SB and TB formulations, C_C and N_N formulations, and NB and
FB formulations were evaluated separately in comparison to the determined performance
criteria. In rows 1 and 2, the averages (sums for #OptSol) of four SB formulations (SNN-
N, SEN-N, SNC-C and SFC-C) and the averages of four TB formulations (TNN-N, TFN-
N, TNC-C and TFC-C) were calculated. In rows 3 and 4, the averages (sums for #OptSol)
of four C_C formulations (SNC-C, SFC-C, TNC-C and TFC-C) and N_N formulations
(SNN-N, SEN-N, TNN-N and TEN-N) were calculated. Finally, in the last two rows, the
averages (sums for #OptSol) of four FB formulations (SEN-N, SFC-C, TFN-N and TFC-
C) and NB formulations (SNN-N, SNC-C, TNN-N and TNC-C) were calculated. The
values in Table 4 show that all formulations are close to each other according to the Avg.
BestInt and Avg. BestUB criteria. In Table 5, in terms of the criteria Avg. CPU Time and
the number of optimal solutions found, TB formulations are superior to SB, C_C
formulations are superior to N_N, and FB formulations are superior to NB.

Table 4. Formulation comparison of C_C vs. N_N and FB vs. NB.

Avg. CPU Time (sec.) # Opt. Solution Found Avg. Best Integer Objective Value Avg. Best Upper Bound Value

FB NB FB NB FB NB FB NB
cC 11014 14914 1,055 1,018 467.2 466.5 480.4 480.1
N_N 999.7  1,753.0 1,068 997 464.0 465.9 478.2 483.3
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Table 5. Formulation comparison of SB vs. TB, C_C vs. N_N, and FB vs. NB.

Avg. CPU Time (sec.) # Opt. Solution Found Avg. Best Integer Objective Value Avg. Best Upper Bound Value

SB 1,410.1 2,057 465.5 481.4
TB 1,262.7 2,081 466.3 479.6
ccC 1,296.4 2,073 466.8 480.3
N_N 1,376.4 2,065 465.0 480.7
FB 1,050.5 2,123 465.6 4793
NB 1,622.2 2,015 466.2 481.7

Figure 5 shows the change in the average CPU time according to T, for all
formulations. It may obviously be seen in Figure 5 that all formulations need more
CPU time to solve the problem of T\, = 200. SB formulations need the least CPU time
when T,,,, = 400; however, TB formulations need the least CPU time when T,,,,, = 100.
Figure 6 shows the change in the total number of optimal solutions found by the
formulations with different T,,, values and supports the above results. In SB formula-
tions, the maximum total number of optimal solutions that may be found is reached
when T,,,, = 400. However, in TB formulations, the maximum total number of optimal
solutions found is reached when T,,,, = 100.

Figure 7 gives the dominance relationships between all of the LP relaxations of different
formulations. In this figure the average percentage gap values are used. Gap value is
calculated by using (U — L)/L, where U is the value of LP relaxation and L is the value of
either the best or the optimal solution obtained within the time limit. And the percentage
gap values are averaged over all instances and different T,,,,, values. The smaller the average
percentage gap value, the better the LP relaxation is.

It is observed in Figure 7 that we can divide formulations in three categories from the
best to worst according to average percentage gap values. The Time-based formulations
with Flow-based auxiliary variable give best LP relaxation values. And the formulations
with Node-based auxiliary variables which are defined between nodes have the worst LP
relaxation values.

All results obtained with eight formulations are given in Appendix A. The tables in the
appendix include all results according to different T,,,,, values and two sets of instances
(Setl, Set2). The asterisk in the tables is used to mark the solutions which exceed time limit
(10800 sec.). In overall evaluation, time-based formulations can find more optimal solu-
tions in less computation time. Besides, sequence based formulations have the advantage of
being not affected by triangular inequality and the identical coordinates of nodes.

In addition to the above analysis, we compare our eight formulations with the
formulation proposed in [21] and [30]. To be able to solve the problems in [21] we
changed the objective function (1) with the function given in (63), and we add the
constraint (64) to the general formulation. In (63) the s, is the profit of cluster p and the
¥p is a binary variable where it takes 1 if the cluster p is visited. The proposed formulation
(ILP) in [30] leads to noticeably faster solutions than [21]. That is why in our comparison
tables we only use the results of ILP in [30]. And these results are given in Table 6. In this
table the first column shows the instance name, and the consecutive two columns show
the BestInt and %Gap values for each formulation, and the last column gives the %Gap
value of the ILP formulation proposed in [30].
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k
Maximize Z SpYp
p=2
Y < Z ZX,‘]’ p =2, v k
ieV\V, jeV,

(63)

(64)

According to the results given in Table 6, ILP can optimally solve 24 out of 88 instances;
however our SFC-C formulation can optimally solve 29 out of 88 instances. Moreover, we
considered 10 more problem instances in this comparison and we find the optimal
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solutions these instances. The average percentage gap value obtained by ILP is 5.85%,
while the SFC-C, SNC-C, TNC-C and TFC-C give better percentage gap values than ILP.
This shows that the auxiliary variables defined in a formulations between clusters are
more efficient to solve these instances.

6. Conclusions

In this paper, we have studied the selective generalized travelling salesman problem, which is
a variant of the generalized travelling salesman problem. In the selective generalized travelling
salesman problem, a profit is associated with each node, and nodes are grouped in clusters.
This profit is collected if a node is visited. The objective is to find the tour that maximizes the
collected profit such that the corresponding duration does not exceed a given threshold. We
proposed eight mathematical formulations using different types of auxiliary variables for the
selective generalized travelling salesman problem. To compare and analyse these formula-
tions, 4608 computational runs were conducted. Overall, 4138 out of 4608 (~90%) test
instances were solved optimally by using all formulations, and some important insights
into the definition of auxiliary variables in the formulations were revealed. In addition, our
formulations are compared with the previously proposed formulations in the literature. The
selective generalized travelling salesman problem may find application in the distribution of
mass products. As such, this method may provide a way to organize distribution processes
that provide advantages both to carriers and customers. In future studies, all variants of
generalized routing problems the selective generalized travelling salesman problem should be
studied. Furthermore, some heuristic and meta-heuristic approaches should be developed to
obtain good quality solutions for larger problems.
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