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Abstract. In this study we have examined, involute of the cubic Bezier curve based on the control
points with matrix form in E3. Frenet vector fields and also curvatures of involute of the cubic
Bezier curve are examined based on the Frenet apparatus of the first cubic Bezier curve in E3.
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1. Introduction and Preliminaries

In 1962 Bézier curves was studied by the French engineer Pierre Bézier, who used them
to design automobile bodies. But the study of these curves was first developed in 1959
by mathematician Paul de Casteljau using de Casteljau’s algorithm, a numerically stable
method to evaluate Bézier curves. A Bézier curve is frequently used in computer graphics
and related fields, in vector graphics, used in animation as a tool to control motion. For
more datail using computer graphics see in [8]. In [2] some properties of Bezier curves are
examined. To guarantee smoothness, the control point at which two curves meet must be
on the line between the two control points on either side. In animation applications, such as
Adobe Flash and Synfig, Bézier curves are used to outline, for example, movement. Users
outline the wanted path in Bézier curves, and the application creates the needed frames
for the object to move along the path. For 3D animation Bézier curves are often used to
define 3D paths as well as 2D curves for keyframe interpolation. We have been motivated
by the following studies. First Bezier-curves with curvature and torsion continuity has
been examined in [5]. Also in [10] Bezier curves and surfaces has been given. In [3] planar
Bezier curves and Bishop Frame of Bezier Curves are examined, respectively. Recently
equivalence conditions of control points and application to planar Bezier curves have been
examined in [6]. In this study we will define and work on Frenet apparatus of Bézier
curves in E3. So we need the derivates of them. Recently Bezier-Like curves has been
defined and cubic Bezier curves transitions have been studied in [7]. Also in [9] designing
the ruled surface are examined as a new approach.
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http://www.ejpam.com 216 c© 2020 EJPAM All rights reserved.
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Theorem 1. The set, whose elements are Frenet vector fields and the curvatures of a
curve α (t) ⊂ IE3, is called Frenet apparatus of the curves. Let α(t) be the curve, with
η = ‖α′ (t)‖ 6= 1 and Frenet apparatus are {T (t) , N (t) , B (t) , κ (t) , τ (t)}. Frenet vector
fields are given for a non arc-lengthed curve

T (t) =
α′ (t)

‖α′ (t)‖
, N (t) = B (t) ΛT (t) , B (t) =

α′ (t) Λα′′ (t)

‖α′ (t) Λα′′ (t)‖

where curvature functions are defined by

κ (t) =

∥∥∥α′ (t) Λα
′′

(t)
∥∥∥

‖α′ (t)‖3
, τ (t) =

〈
α′ (t) Λα

′′
(t) , α′′′(t)

〉
‖α′ (t) Λα′′ (t)‖2

.

Also Frenet formulae are well known as T ′

N ′

B′

 =

 0 ηκ 0
−ηκ 0 ητ

0 −ητ 0

 T
N
B

 , [4].

Theorem 2. The Frenet-Serret vectors fields of the involute α∗ = α (t)+λ (t)T (t) , which
is not an arclengthed curve with ‖α′‖ = η 6= 1, based on the its evolute curve α are

T ∗ = N,N∗ =
−κT + τB

(κ2 + τ2)
1
2

, B∗ =
τT + κB

(κ2 + τ2)
1
2

.

The first and the second curvatures of involute α∗, are

κ∗ =

√
κ2 + τ2

(c− ηt)κ
, τ∗ =

−τ2
(
κ
τ

)′
(c− ηt)κ (κ2 + τ2)

(1)

respectively, where
dt

ds∗
=

1

c− ηt
, [4].

Generaly Béziers curve can be defined by n + 1 control points P0, P1, ..., Pn with the
parametrization

B(t) =

n∑
i=0

(
n

i

)
ti (1− t)n−i (t) [Pi] . (2)

In this study we will define and work on cubic Bézier curves which are defined in E3. For
more detail see [1] .

Definition 1. A cubic Bézier curve is a special Bézier curve has only four points P0, P1,
P2 and P3, with the parametrization

B(t) =
3∑
i=0

(
3

i

)
ti (1− t)3−i (t) [Pi] , (3)

B (t) = (1− t)3 P0 + 3t (1− t)2 P1 + 3t2 (1− t)P2 + t3P3.
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The matrix form of the cubic Bezier curve with control points P0, P1, P2, P3, is

α (t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



P0

P1

P2

P3

 .
Also using the derivatives of a cubic Bézier curve Frenet apparatus {T (t) , N (t) , B (t) , κ (t) , τ (t)}
have already been given in [1] as in the following theorems by using matrix representation.
For more detail see in [1].

Theorem 3. The first derivative of a cubic Bézier curve by using matrix representation
is

α′(t) =
[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 Q0

Q1

Q2

 (4)

with the control points

Q0 = 3 (P1 − P0) = (x0, y0, z0) , Q1 = 3 (P2 − P1) = (x1, y1, z1)Q2 = 3 (P3 − P2) = (x2, y2, z2) .

Theorem 4. The second derivative of a cubic Bézier curve by using matrix representation
is

α′′(t) =
[
t 1

] [ −1 1
1 0

] [
R0

R1

]
(5)

with the control points

R0 = 6 (P2 − 2P1 + P0) = 6 (x1 − x0, y1 − y0, z1 − z0) ,
R1 = 6 (P3 − 2P2 + P1) = 6 (x2 − x1, y2 − y1, z2 − z1) .

Theorem 5. The third derivative of a cubic Bézier curve by using matrix representation
is

α′′′(t) = [R0R1] (6)

with the control points

[R0R1] = R1 −R0 = 2 [Q1Q2]− 2 [Q0Q1] = 6 (P3 − 3P2 + 3P1 − P0) .

1.1. Frenet apparatus of a cubic Bezier curve

Frenet apparatus {T (t) , N (t) , B (t) , κ (t) , τ (t)} of a cubic Bézier curve have already
been given in [1] as in the following theorems by using the matrix representation.

Theorem 6. Tangent vector field of a cubic Bezier curve by using the matrix representa-
tion is

T (t) =
1

η

[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 x0 y0 z0
x1 y1 z1
x2 y2 z2


where η = ‖α′‖ .
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Theorem 7. Binormal vector field of a cubic Bezier curve by using the matrix represen-
tation is

B (t) =
6

m

[
t2 t 1

]  b11 b12 b13
b21 b22 b23
b31 b32 b33


where ‖α′Λα′′‖ = m
b11 = y0(z1 − z2) + y1(z2 − z0) + y2(z0 − z1)

b12 = −x0 (z1 − z2)− x1 (z2 − z0)− x2 (z0 − z1)
b13 = x0 (y1 − y2) + x1 (y2 − y0) + x2 (y0 − y1)
b21 = 2y1z0 + y0z2 − 2y0z1 − y2z0
b22 = 2x0z1 − 2x1z0 − x0z2 + x2z0
b23 = 2x1y0 − 2x0y1 + x0y2 − x2y0
b31 = y0z1 − y1z0
b32 = x1z0 − x0z1
b33 = x0y1 − x1y0.

Theorem 8. Normal vecror field of a cubic Bezier curve by using the matrix representation
is

N (t) =
6

ηm

[
t4 t3 t2 t1 1

]

n11 n12 n13
n21 n22 n23
n31 n32 n33
n41 n41 n43
n51 n51 n53


where
n11 = b12d13 − b13d12
n21 = b12d23 − b13d22 + b22d13 − b23d12
n31 = b12d33 − b13d32 + b22d23 − b23d22 + b32d13 − b33d12
n41 = b22d33 − b23d32 + b32d23 − b33d22
n51 = b32d33 − b33d32
n12 = b11d13 − b13d11
n22 = −b11d23 − b21d13 + b13d21 + b23d11
n32 = b23d21 + b33d11 − b11d33 − b21d23 + b13d31 − b31d13
n42 = −b21d33 − b31d23 + b23d31 + b33d21
n52 = −b31d33 + b33d31
n13 = b11d12 − b12d11
n23 = b11d22 − b12d21 + b21d12 − b22d11
n33 = b11d32 − b12d31 + b21d22 − b22d21 + b31d12 − b32d11
n43 = b21d32 − b22d31 + b31d22 − b32d21
n53 = b31d32 − b32d31.

Theorem 9. First and second curvatures of a cubic Bezier curve by using the matrix
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representation are

κ (t) =
6

η3
[
t4 t3 t2 t 1

]


b211 + b212 + b213
2b11b21 + 2b12b22 + 2b13b23

2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223
2b21b31 + 2b22b32 + 2b23b33

b231 + b232 + b233,

 ,

τ (t) =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

‖α′ (t) Λα′′ (t)‖2
.

2. Involute of cubic Bezier curve

Definition 2. If the curve α∗ which lies on the tangent surface intersect the tangent
lines orthogonally is called an involute of α. If a curve α∗ is an involute of α, then by
definition α which is not an arclengthed curve.is an evolute of α∗. Hence given α, its
evolutes are the curves whose tangent lines intersect α orthogonally. Let the quantities
{T ∗, N∗, B∗, κ∗, τ∗} be collectively Frenet-Serret apparatus of the curve α∗ which is not an
arclengthed curve with ‖α′‖ = η 6= 1, [4]. The equation of involute of the curve α has the
following parametrization;

α∗ (t) = α (t) + λ (t)T (t) . (7)

Also since λ = c− ηt it can be written as in the following parametrization

α∗ (t) = α (t) +
(c− ηt)

η
α′ (t) .

Theorem 10. The involute of a cubic Bezier curve has the matrix form based on the
control points P0, P1, P2 and P3 of any cubic Bezier curve

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1

3− 3µ −6 + 9µ 3− 9µ 3µ
−3 + 6µ 3− 12µ 6µ 0
1 + 3µ −3 0 0



P0

P1

P2

P3


with µ = c−ηt

η .

Proof. Lets µ =
(c− ηt)

η
, since α∗ = α (t) + µα′ (t)

α∗ =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



P0

P1

P2

P3

+µ
[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 Q0

Q1

Q2


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and Q0 = 3 (P1 − P0) , Q1 = 3 (P2 − P1) , Q2 = 3 (P3 − P2) it can be written in matrix
form as in

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1

(3− 3µ) (−6 + 9µ) (3− 9µ) 3µ
(−3 + 6µ) (3− 12µ) 6µ 0
(1 + 3µ) −3 0 0



P0

P1

P2

P3


we have its matrix product form as

α∗ (t) =
[
t3 t2 t 1

] 
3P1 − P0 − 3P2 + P3

P1 (9µ− 6)− P2 (9µ− 3)− P0 (3µ− 3) + 3µP3

P0 (6µ− 3)− P1 (12µ− 3) + 6µP2

P0 (3µ+ 1)− 3P1

 . (8)

Theorem 11. The control points of the involute of any cubic Bezier curve with constant
speed, based on the control points of cubic Bezier curve, as in the following way

I0 = 3
c

η
P1 − P0

(
3
c

η
− 1

)
,

I1 = 3
c

η
P1 − P0

(
c

η
− 1

)
− 2

c

η
P2,

I2 =

(
6
c

η
+ 2

)
P1 − P2

(
7
c

η
+ 1

)
+
c

η
P3,

I3 =

(
3
c

η
− 2

)
P3 − P2

(
15
c

η
− 3

)
+ 12

c

η
P1.

Proof. Let I0, I1, I2, and I3 be control points of involute α∗, so we can write

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



I0
I1
I2
I3

 . (9)

From the equality of the left sides of 8 and 9, we have
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



I0
I1
I2
I3

 =


2P0 − 6P1 + 6P2 − 2P3(

−3− 3c
η

)
P0 +

(
6 + 9c

η

)
P1 −

(
3 + 9c

η

)
P2 + 3c

η P3

6c
η P0 − 6c

η P2(
1− 3c

η

)
P0 + 3c

η P1



=


2 −6 6 −2(

−3− 3c
η

) (
6 + 9c

η

)
−
(

3 + 9c
η

)
+3c

η
6c
η 0 −6c

η 0(
1− 3c

η

)
3c
η 0 0



P0

P1

P2

P3


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using the inverse matrix
I0
I1
I2
I3

 =


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0


−1


2 −6 6 −2(
−3− 3c

η

) (
6 + 9c

η

)
−
(

3 + 9c
η

)
+3c

η
6c
η 0 −6c

η 0(
1− 3c

η

)
3c
η 0 0



P0

P1

P2

P3

 .
(10)

Theorem 12. The control points of the involute of any cubic Bezier curve, under the
condition c

η − t = µ = constant, can be given,

I0 = 3µP1 − (3µ− 1)P0,

I1 = 2µP2 − µP0 − P1 (µ− 1) ,

I2 = µP3 − 2µP1 + P2 (µ+ 1) ,

I3 = (3µ+ 1)P3 − 3µP2.

Proof. If c
η − t = µ is constant,

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



P0

P1

P2

P3


+µ
[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 3 (P1 − P0)
3 (P2 − P1)
3 (P3 − P2)

 .
Hence
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



I0
I1
I2
I3

 =


−P0 + 3P1 − 3P2 + P3

((3− 3µ)P0 + (−6 + 9µ)P1 + (3− 9µ)P2 + 3µP3)
((−3 + 6µ)P0 + (3− 12µ)P1 + 6µP2)

(1− 3µ)P0 + 3µP1



=


−1 3 −3 1

(3− 3µ) (−6 + 9µ) (3− 9µ) 3µ
(−3 + 6µ) (3− 12µ) 6µ 0
(1− 3µ) 3µ 0 0



P0

P1

P2

P3


using the inverse matrix we can find the control points of the involute of any cubic Bezier
curve with constant µ, based on the control points of cubic Bezier curve, as in the following
way:

I0
I1
I2
I3

 =


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0


−1 

−1 3 −3 1
(3− 3µ) (−6 + 9µ) (3− 9µ) 3µ

(−3 + 6µ) (3− 12µ) 6µ 0
(1− 3µ) 3µ 0 0



P0

P1

P2

P3

 ,
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
I0
I1
I2
I3

 =


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1




−1 3 −3 1
(3− 3µ) (−6 + 9µ) (3− 9µ) 3µ

(−3 + 6µ) (3− 12µ) 6µ 0
(1− 3µ) 3µ 0 0



P0

P1

P2

P3

 . (11)

2.1. Frenet apparatus of the involute curve of any cubic Bezier curve in
E3

Theorem 13. Tangent vector field of involute curve of any cubic Bezier curve is

T ∗ =
6

mη

[
t4 t3 t2 t1 1

]

n11 n12 n13
n21 n22 n23
n31 n32 n33
n41 n41 n43
n51 n51 n53

 .
Proof. We have already known that tangent vector field of involute curve T ∗ is lineer

dependent N, that is why T ∗ = N.

Theorem 14. Normal vector field of involute α∗of any cubic Bezier curve in E3is

N∗ =

[
t2 t 1

]
η (κ2+τ2)

1
2

κ

 2x1 − x0 − x2 + 6ητ
mκ b11 2y1 − y0 − y2 + 6ητ

mκ b12 2z1 − z0 − z2 + 6ητ
mκ b13

2x0 − 2x1 + 6ητ
mκ b21 2y0 − 2y1 + 6ητ

mκ b22 2z0 − 2z1 + 6ητ
mκ b23

6ητ
mκ b31 − x0

6ητ
mκ b32 − y0

6ητ
mκ b33 − z0

 .
Proof. Since N∗ =

−κT + τB

(κ2 + τ2)
1
2

, we have

N∗ =

−κ
η

[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 x0 y0 z0
x1 y1 z1
x2 y2 z2

+ τ6
m

[
t2 t 1

]  b11 b12 b13
b21 b22 b23
b31 b32 b33


(κ2 + τ2)

1
2

N∗ =

[
t2 t 1

]
(κ2 + τ2)

1
2

−κ
η

 1 −2 1
−2 2 0
1 0 0

 x0 y0 z0
x1 y1 z1
x2 y2 z2

+
6τ

m

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 .

Hence it is easy to calculate the following result

N∗ =

[
t2 t 1

]
η (κ2+τ2)

1
2

κ

 2x1 − x0 − x2 + 6ητ
mκ b11 2y1 − y0 − y2 + 6ητ

mκ b12 2z1 − z0 − z2 + 6ητ
mκ b13

2x0 − 2x1 + 6ητ
mκ b21 2y0 − 2y1 + 6ητ

mκ b22 2z0 − 2z1 + 6ητ
mκ b23

6ητ
mκ b31 − x0

6ητ
mκ b32 − y0

6ητ
mκ b33 − z0

 .
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Theorem 15. Binormal vector field of involute α∗of any cubic Bezier curve in E3is

B∗ =

[
t2 t 1

]
(κ2+τ2)

1
2

τ η

 x0 − 2x1 + x2 + 6ηκ
mτ b11 y0 − 2y1 + y2 + 6ηκ

mτ b12 z0 − 2z1 + z2 + 6ηκ
mτ b13

2x1 − 2x0 + 6ηκ
mτ b21 2y1 − 2y0 + 6ηκ

mτ b22 2z1 − 2z0 + 6ηκ
mτ b23

x0 + 6ηκ
mτ b31 y0 + 6ηκ

mτ b32 z0 + 6ηκ
mτ b33

 .
Proof. Since B∗ = τT+κB

(κ2+τ2)
1
2
,

B∗ =

τ
η

[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 x0 y0 z0
x1 y1 z1
x2 y2 z2

+ 6κ
m

[
t2 t 1

]  b11 b12 b13
b21 b22 b23
b31 b32 b33


(κ2 + τ2)

1
2

,

B∗ =
[
t2 t 1

] τη
 1 −2 1
−2 2 0
1 0 0

 x0 y0 z0
x1 y1 z1
x2 y2 z2

+ 6κ
m

 b11 b12 b13
b21 b22 b23
b31 b32 b33


(κ2 + τ2)

1
2

.

Hence it is easy to give the proof.

2.2. The first and second curvature of involute α∗

Theorem 16. The first curvature of involute α∗of any cubic Bezier curve in E3is

κ∗ =
1

m2(c− ηt)

√
m4 + η6 (x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0)2

Proof. Since κ∗ =

√
κ2 + τ2

(c− ηt)κ
, and κ =

m

η3

κ∗ =

√
m2

η6
+ (x0y1z2−x0y2z1−x1y0z2+x1y2z0+x2y0z1−x2y1z0)2

m2

(c− ηt)m
η3

(c− ηt)κ > 0, κ 6= 0. It is trivial.

Theorem 17. The second curvature of involute α∗of any cubic Bezier curve in E3is

τ∗ =
η3

m3

(
κ− κ′ (x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0)

(c− ηt) (κ2 + τ2)

)
.

Proof.

Considering the τ∗ =
κτ ′ − κ′τ

(c− ηt)κ (κ2 + τ2)
equation, we have

τ∗ =
κ− κ′ (x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0)

m2(c− ηt)m
η3

(κ2 + τ2)
.
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Example 1. Find the involute of the cubic Bezier curve with control points P0 = (1, 2, 3) ,
P1 = (1, 1, 1) , P2 = (2, 1, 3) , and P3 = (1,−1, 0) The cubic Bezier curve has the followow-
ing matrix representation

α (t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



P0

P1

P2

P3

 . (12)

The involute α∗ of the cubic Bezier curve α, has the followowing matrix representation

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1

3− 3µ −6 + 9µ 3− 9µ 3µ
−3 + 6µ 3− 12µ 6µ 0
1 + 3µ −3 0 0



P0

P1

P2

P3

 . (13)

Using control points as

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1

3− 3µ −6 + 9µ 3− 9µ 3µ
−3 + 6µ 3− 12µ 6µ 0
1 + 3µ −3 0 0




1 2 3
1 1 1
2 1 3
1 −1 0


we have

α∗ (t) =

(
3µ+ 6tµ− 9t2µ+ 3t2 − 3t3 − 2, 6µ− 3t+ 6tµ− 9t2µ+ 3t2 − 3t3,

24tµ− 19µ− 6t− 27t2µ+ 12t2 − 9t3

)
.

Also under the condition constant c = η = ‖α′‖ and µ = (1− t) , we can find the special
involute of α as in the following way

α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1

3− 3 (1− t) −6 + 9 (1− t) 3− 9 (1− t) 3 (1− t)
−3 + 6 (1− t) 3− 12 (1− t) 6 (1− t) 0
1 + 3 (1− t) −3 0 0




1 2 3
1 1 1
2 1 3
1 −1 0



α∗ (t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3t 3− 9t 9t− 6 3− 3t

3− 6t 12t− 9 6− 6t 0
4− 3t −3 0 0



P0

P1

P2

P3

 .
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