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Abstract: In this paper, we introduce and investigate an analytic function class Pq(λ,A,B) that we call the class of
q−starlike and q−convex functions with respect to the parameter λ . We give coefficient bounds estimates, distortion
bound and growth theorems for the functions belonging to this class.
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1. Introduction and preliminaries

Let H (U) denote the class of analytic functions on the open unit disk U = {z ∈ C : |z| < 1} in the complex
plane. Also, let T be the class of analytic functions f ∈ H (U) , which are normalized by f(0) = 0 = f ′(0)− 1

with series expansion

f(z) = z − a2z
2 − a3z

3 − · · · − anz
n − · · · = z −

∞∑
n=2

anz
n, an ≥ 0. (1.1)

Also, we denote by S the subclass of T consisting of functions which are also univalent in U.

We say that a function f(z) is subordine to g(z) and written as f ≺ g , if there exists a (Schwartz)
function ω (z) with ω (0) = 0 and |ω (z)| < 1 such that f(z) = g(ω (z)) . In particular, when g(z) is univalent
then the above subordination is equivalent to f(0) = g(0) and f(U) ⊂ g(U) (see [14]).

Some of the important subclasses of S are S∗ (α) and C (α) , respectively, starlike and convex functions
of order α ≥ 0 (for details, see [11, 14] and [27]).

S∗(α) =

{
f ∈ S : ℜ

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
(1.2)

and

C(α) =

{
f ∈ S : ℜ

(
(zf ′(z))′

f ′(z)

)
> α, z ∈ U

}
. (1.3)

S∗ = S∗(0) and C = C(0) are, respectively, well-known starlike and convex functions in U . As it is
known, geometrically, a function f ∈ A is called starlike in U if f(U) is starlike domain in the complex plane
and convex in U if f(U) is convex domain in the complex plane.
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Jackson [16] introduced the q−derivative operator Dq of a function f ∈ H(U) as follows:

Dqf(z) =

{
f(z)−f(qz)

(1−q)z , if z ̸= 0

f
′
(0), if z = 0

, (1.4)

for q ∈ (0, 1). It is clear that lim
q→1−

Dqf(z) = f ′(z) for f ∈ H(U) .

The following is the formula for the q−derivative of the function zn as follows:

Dqz
n = [n]q z

n−1, n ∈ N, (1.5)

where

[n]q =

n∑
k=1

qk−1, [0]q = 0 (1.6)

is the q−analogue of the natural numbers (which is called the basic number n). It follows from (1.6) that
[n]q = (1− qn)/(1− q) and lim

q→1−
[n]q = n for q ∈ (0, 1).

Also,
Dq [f(z)g(z)] = f(qz)Dqg(z) + g(z)Dqf(z), (1.7)

Dq [af(z) + bg(z)] = aDqf(z) + bDqg(z), a, b ∈ C, (1.8)

Dq

[
f(z)

g(z)

]
=

g(z)Dqf(z)− f(z)Dqg(z)

g(qz)g(z)
, g(qz)g(z) ̸= 0 (1.9)

and on a product of functions, the general Leibniz rule for action of powers of the q−derivative operator is

D(n)
q (fg)(z) =

n∑
k=0

(
n

k

)
D(k)

q f(qn−kz)D(n−k)
q g(qkz), (1.10)

where
(
n
k

)
q

is q−binomial coefficients given by

(
n

k

)
q

=
[n]q!

[k]q! [n− k]q!
,

for k = 0, 1, 2, ..., n such that

[n]q! =

n∏
k=1

[k]q , [0]q! = 1

is q− factorial function. Note that lim
q→1−

[n]q! = n! is factorial function, and lim
q→1−

(
n
k

)
q
=
(
n
k

)
are binomial

coefficients. We refer to [12, 15, 18] about some properties of difference operator Dq .
It follows from (1.10) that D2

qf(z) = Dq(Dqf(z)), and Dn
q f(z) = Dq(D

n−1
q f(z)) for n = 3, 4, ...

It follows from (1.4) and (1.1) that

Dqf(z) = 1−
∞∑

n=2

[n]q anz
n−1 (1.11)
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and
Dq [zDqf(z)] = Dqf(z) + zD2

qf(z).

For q ∈ (0, 1) , we define by S∗
q (α) and Cq (α) the subclass of T , which we will call, respectively,

q − starlike and q − convex functions of order α ≥ 0 , as follows

S∗
q (α) =

{
f ∈ S : ℜzDqf(z)

f(z)
> α, z ∈ U

}
,

Cq(α) =

{
f ∈ S : ℜ

(
Dq(zDqf(z))

Dqf(z)

)
> α, z ∈ U

}
.

It is clear that lim
q→1−

S∗
q (α) = S∗(α) and lim

q→1−
C(α) = C(α).

Studies on q−difference equations were initiated by Jackson [17], Carmichael [10], Mason [19], Adams
[1], and Trjizinsky [28]. A recent study in this subject was done by Bangerezako [9]. Some properties related
with function theory involving q−theory were first introduced by Ismail et al. [15]. Moreover, there are more
studies in this matter such as [2, 21, 23, 24]. As the study [2] suggests, there are a lot that can be done for
this research topic. For example, q−analogy of starlikeness and convexity of analytic functions in the unit
disk and in arbitrary simply connected domains would be interesting for researchers in this field. Recently, in
[8], q−convexity for basic hypergeometric functions was studied. In a recent paper [24], Bieberbach conjecture
problem for q−close-to-convex functions was estimated optimally. In fact, sharpness of their result is still open
to debate as the authors also stated.

Recently, several subclasses of analytic functions have been investigated by many researchers using the
q−derivative operator. For example, to define several subclasses of analytic functions and to study the extension
of the theory of univalent functions, the theory of q−derivative, q−derivative operator can be used as tools.

In [3], by using applications of the q−derivative, it was shown that Szasz Mirakyan operators are convex
when convex functions are taken such that their result generalizes well known results for q = 1 . Also, in
[3], the authors showed that q−derivatives of these operators approach to q−derivatives of approximated
functions. Recently, by Uçar et al. [30], some properties of q−close-to-convex functions were studied. In [22],
Ramachandran et al. studied certain bound for q−starlike and q−convex functions with respect to symmetric
points. In [22], the coefficient estimates for the subclasses of q−starlike and q−convex functions with respect to
symmetric points involving q−difference operator were established and the authors provided certain applications
based on these results for subclasses of univalent functions defined by convolution.

Very recently, q−starlike functions were investigated and basic characterization, growth theorem, and
distortion theorem for this class were given by Polatoğlu [20]. Also, q−close-to-convex function with respect
to Janowski starlike functions were studied and basic characterization, growth theorem, and distortion theorem
for this class were given by Uçar [29].

Inspired by the studies mentioned above, we introduce the function class Pq(λ,A,B) as follows.

Definition 1.1 A function f ∈ T given by (1.1) is said to be in the class Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] if
the following condition is satisfied

zDqf(z) + λz2D2
qf(z)

λzDqf(z) + (1− λ) f(z)
≺ 1 +Az

1 +Bz
, z ∈ U,
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where −1 ≤ B < A ≤ 1.

In the special case for A = −B = 1 and A = 1 − 2α, B = −1 from the Definition 1.1, we can give the
following definitions, respectively.

Definition 1.2 A function f ∈ T given by (1.1) is said to be in the class Pq(λ, 1,−1), q ∈ (0, 1) , λ ∈ [0, 1] if
the following condition is satisfied

zDqf(z) + λz2D2
qf(z)

λzDqf(z) + (1− λ) f(z)
≺ 1 + z

1− z
, z ∈ U.

Definition 1.3 A function f ∈ T given by (1.1) is said to be in the class Pq(λ, 1−2α,−1), q ∈ (0, 1) , λ ∈ [0, 1]

if the following condition is satisfied:

zDqf(z) + λz2D2
qf(z)

λzDqf(z) + (1− λ) f(z)
≺ 1 + (1− 2α) z

1− z
, z ∈ U.

Note that classes lim
q→1−

Pq(λ,A,B) = P (λ,A,B) , and P (λ, 1− 2α,−1) with A = 1− 2α , B = −1 were

studied by Altıntas [4, 5] and Altıntas et al. [6, 7].
The main purpose of this paper is to give coefficient bounds estimates and distortion theorems for the

functions belonging to the class Pq(λ,A,B), q ∈ (0, 1) .

2. Coefficient bound estimates for the class Pq(λ,A,B)

In this section, we will investigate some inclusion results of the subclass Pq(λ,A,B), q ∈ (0, 1) . Here, we
provide coefficient estimates and some conditions for the functions belonging to this class.

A necessary condition for the functions belonging to the class Pq(λ,A,B) is given by the following
theorem.

Theorem 2.1 If f ∈ T belongs to the class Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] then the following condition is
satisfied

∞∑
n=2

(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
]
an ≤ 1− β, (2.1)

where β = 1−A
1−B ,−1 ≤ B < A ≤ 1. The result obtained here is sharp.

Proof Let f ∈ T . Throughout this study, we assume that F (z) is defined by

F (z) = λzDqf(z) + (1− λ) f(z), z ∈ U. (2.2)

It is clear that F (z) is an analytic function in U with conditions

F (0) = 0 = DqF (0)− 1.

A simple computation using (1.1), (1.11), and (2.2) shows that F (z) has the following power series
expansion

F (z) = z −
∞∑

n=2

Anz
n, z ∈ U, (2.3)
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where

An =
[
1 +

(
[n]q − 1

)
λ
]
an, n = 2, 3, ... (2.4)

Assume that f ∈ Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] , −1 ≤ B < A ≤ 1 . Then,

zDqF (z)

F (z)
≺ 1 +Az

1 +Bz
, z ∈ U. (2.5)

Using the definition of the subordination condition, we have

h (z) =
zDqF (z)

F (z)
=

1 +Aω (z)

1 +Bω (z)

with ω (0) = 0 and |ω (z)| < 1, z ∈ U.

It follows that

|ω (z)| =
∣∣∣∣ h (z)− 1

A−Bh (z)

∣∣∣∣ < 1.

Then, by taking h (z) = u+ iv from the last inequality, we find that

1−A2 +
(
1−B2

)
u2 < 1−A2 +

(
1−B2

) (
u2 + v2

)
< 2u (1−AB) ;

that is, (
1−B2

)
u2 − 2u (1−AB)u+

(
1−A2

)
< 0.

The last inequality implies that

1−A

1−B
< u = ℜ (h (z)) <

1 +A

1 +B

(see also inequality (17) in [26]).
Thus, we write

ℜ
(
zDqF (z)

F (z)

)
> β, (2.6)

where β = 1−A
1−B ,−1 ≤ B < A ≤ 1.

From (2.3) and (2.6) using (1.11) for the function F (z) , we obtain

ℜ

z −
∞∑

n=2
[n]q Anz

n

z −
∞∑

n=2
Anzn

 > β, z ∈ U.

The expression

z −
∞∑

n=2
[n]q Anz

n

z −
∞∑

n=2
Anzn
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is real if the chosen z is real. Thus, from the last inequality letting z → 1 through real values, we obtain

1−
∞∑

n=2

[n]q An ≥ β

(
1−

∞∑
n=2

Anz
n

)
,

which is equivalent to

∞∑
n=2

(
[n]q − β

)
An ≤ 1− β.

Taking values An, n = 2, 3, ... from (2.4), we complete the proof of inequality (2.1).
To see that result obtained in the theorem is sharp, we note that equality is attained in the inequality

when f (z) is chosen so that

f (z) = fn (z) = z − 1− β(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
]zn, z ∈ U, n = 2, 3, ... (2.7)

Hence, the result obtained in the theorem is sharp for the functions fn (z) defined by (2.7). Therefore,
the proof of Theorem 2.1 is completed. 2

From the Theorem 2.1, using different values of the parameters, we can easily obtain the following results.

Corollary 2.2 If f ∈ T belongs to the class Pq(λ, 1,−1), q ∈ (0, 1) , λ ∈ [0, 1] then the following condition
is satisfied:

∞∑
n=2

[
1 +

(
[n]q − 1

)
λ
]
[n]q an ≤ 1.

The result obtained here is sharp.

Corollary 2.3 If f ∈ T belongs to the class Pq(λ, 1 − 2α,−1), q ∈ (0, 1) , λ ∈ [0, 1] , α ∈ [0, 1) , then the
following condition is satisfied:

∞∑
n=2

(
[n]q − α

) [
1 +

(
[n]q − 1

)
λ
]
an ≤ 1− α.

The result obtained here is sharp.

Corollary 2.4 If f ∈ T belongs to the class S∗
q (α) , q ∈ (0, 1) , α ∈ [0, 1) then the following condition is

satisfied:

∞∑
n=2

(
[n]q − α

)
an ≤ 1− α.

The result obtained here is sharp.
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Corollary 2.5 If f ∈ T belongs to the class Cq (α) , q ∈ (0, 1) , α ∈ [0, 1) then the following condition is
satisfied:

∞∑
n=2

(
[n]q − α

)
[n]q an ≤ 1− α.

The result obtained here is sharp.

Note that related results obtained in Corollaries 2.4 and 2.5 for the classes S∗ (α) and C (α) , respectively,
were obtained by Silverman in [25] as follows.

Theorem 2.6 (see [25], Theorem 2) A function f ∈ T is in the class S∗ (α) , α ∈ [0, 1) if and only if

∞∑
n=2

(n− α) an ≤ 1− α.

Corollary 2.7 (see [25], Corollary 2) A function f ∈ T is in the class S∗ (α) , α ∈ [0, 1) if and only if

∞∑
n=2

n (n− α) an ≤ 1− α.

On the coefficient bounds of the functions belonging to the class Pq(λ,A,B) , we give the following
theorem.

Theorem 2.8 If f ∈ T belongs to the class Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] then the following condition is
satisfied:

∞∑
n=2

an ≤ 1− β(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
] ,

∞∑
n=2

[n]q an ≤
(1− β) [n]q(

[n]q − β
) [

1 +
(
[n]q − 1

)
λ
] , n = 2, 3, ...,

where β = 1−A
1−B ,−1 ≤ B < A ≤ 1. The results obtained here are sharp.

Proof Let f ∈ Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] . Then, using Theorem 2.1, we can write

(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
] ∞∑
n=2

an ≤
∞∑

n=2

(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
]
an ≤ 1− β,

which is equivalent to the first assertion of the theorem.
Similarly, we write

[
1 +

(
[n]q − 1

)
λ
] ∞∑
n=2

(
[n]q − β

)
an ≤

∞∑
n=2

(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
]
an ≤ 1− β;
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that is, [
1 +

(
[n]q − 1

)
λ
] ∞∑
n=2

[n]q an ≤ 1− β +
[
1 +

(
[n]q − 1

)
λ
]
β

∞∑
n=2

an,

In the right side of the last inequality using the first assertion of the theorem, we arrive at the following
inequality

[
1 +

(
[n]q − 1

)
λ
] ∞∑
n=2

[n]q an ≤
(1− β) [n]q
[n]q − β

.

From here, we can easily see that the second assertion of the theorem is true.
It is clear that the results obtained in theorem are sharp for the functions defined by (2.7).
Thus, the proof of Theorem 2.8 is completed. 2

Remark 2.9 Numerous consequences of the results obtained in Theorem 2.8 can be given for different values
of parameters A,B, λ , and β .

The following theorem is direct result of Theorem 2.1.

Theorem 2.10 If f ∈ T belongs to the class Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] then the following inequality
for the coefficients is satisfied:

an ≤ 1− β(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
] , n = 2, 3, ...,

where β = 1−A
1−B ,−1 ≤ B < A ≤ 1.

From Theorem 2.10, we arrive at the following results.

Corollary 2.11 If f ∈ T belongs to the class Pq(λ, 1,−1), q ∈ (0, 1) ,

λ ∈ [0, 1] then the following inequality for the coefficients is satisfied:

an ≤ 1[
1 +

(
[n]q − 1

)
λ
]
[n]q

, n = 2, 3, ...

Corollary 2.12 If f ∈ T belongs to the class Pq(λ, 1 − 2α,−1), q ∈ (0, 1) , λ ∈ [0, 1] , α ∈ [0, 1) then the
following inequality for the coefficients is satisfied:

an ≤ 1− α(
[n]q − α

) [
1 +

(
[n]q − 1

)
λ
] , n = 2, 3, ...

Corollary 2.13 If f ∈ T belongs to the class S∗
q (α) , q ∈ (0, 1) , α ∈ [0, 1) then the following inequality for

the coefficients is satisfied:

an ≤ 1− α

[n]q − α
, n = 2, 3, ...
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Corollary 2.14 If f ∈ T belongs to the class Cq (α) , q ∈ (0, 1) , α ∈ [0, 1) then the following inequality for
the coefficients is satisfied:

an ≤ 1− α(
[n]q − α

)
[n]q

, n = 2, 3, ...

Remark 2.15 Numerous consequences of the results obtained in the above corollaries can be given for different
values of parameters λ and α .

3. Distortion bound and growth theorems for the class Pq(λ,A,B)

In this section, we give distortion and growth theorems for the functions belonging to the class Pq(λ,A,B) .
Our coefficient bounds enable us to prove the following theorem.

Theorem 3.1 Let f ∈ T belong to the class Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] . Then,

r − 1− β(
[2]q − α

) [
1 +

(
[2]q − 1

)
λ
]r2 ≤ |f (z)| ≤ r +

1− β(
[2]q − α

) [
1 +

(
[2]q − 1

)
λ
]r2,

|z| = r, r ≤ 1,

where β = 1−A
1−B ,−1 ≤ B < A ≤ 1 , with equality for the function

f (z) = z − 1− β(
[2]q − β

) [
1 +

(
[2]q − 1

)
λ
]z2, |z| = r. (3.1)

Proof Assume that f ∈ Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] . Then, using Theorem 2.1, we can write

(
[2]q − β

) [
1 +

(
[2]q − 1

)
λ
] ∞∑
n=2

an ≤
∞∑

n=2

(
[n]q − β

) [
1 +

(
[n]q − 1

)
λ
]
an < 1− β;

that is,
∞∑

n=2

an ≤ 1− β(
[2]q − β

) [
1 +

(
[2]q − 1

)
λ
] ,

Using this, we can easily show that

|f (z)| ≤ r +

∞∑
n=2

anr
n ≤ r + r2

∞∑
n=2

an ≤ r +
1− β(

[2]q − β
) [

1 +
(
[2]q − 1

)
λ
]r2. (3.2)

On the other hand,

|f (z)| ≥ r −
∞∑

n=2

anr
n ≥ r − r2

∞∑
n=2

an ≥ r − 1− β(
[2]q − β

) [
1 +

(
[2]q − 1

)
λ
]r2. (3.3)
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Thus, the combination of (3.2) and (3.3) completes the proof of the inequalities.
It is clear that equalities are attained in the inequalities when the function f (z) is chosen as in (3.1).
Thus, the proof of Theorem 3.1 is completed. 2

From the Theorem 3.1, we arrive at the following results.

Corollary 3.2 Let f ∈ T belong to the class Pq(λ, 1,−1), q ∈ (0, 1) , λ ∈ [0, 1] . Then,

r − 1[
1 +

(
[2]q − 1

)
λ
]
[2]q

r2 ≤ |f (z)| ≤ r +
1[

1 +
(
[2]q − 1

)
λ
]
[2]q

r2, |z| = r, r ≤ 1,

such that equality is achieved for the function

f (z) = z − 1[
1 +

(
[2]q − 1

)
λ
]
[2]q

z2, |z| = r.

Corollary 3.3 Let f ∈ T belong to the class Pq(λ, 1− 2α,−1), q ∈ (0, 1) , λ ∈ [0, 1] , α [0, 1) . Then,

r − 1− α(
[2]q − α

) [
1 +

(
[2]q − 1

)
λ
]r2 ≤ |f (z)| ≤ r +

1− α(
[2]q − α

) [
1 +

(
[2]q − 1

)
λ
]r2,

|z| = r, r ≤ 1

such that equality is achieved for the function

f (z) = z − 1− α(
[2]q − α

) [
1 +

(
[2]q − 1

)
λ
]z2, |z| = r.

Corollary 3.4 Let f ∈ T belong to the class S∗
q (α) , q ∈ (0, 1) , α ∈ [0, 1) . Then,

r − 1− α

[2]q − α
r2 ≤ |f (z)| ≤ r +

1− α

[2]q − α
r2, |z| = r, r ≤ 1,

such that equality is achieved for the function

f (z) = z − 1− α

[2]q − α
z2, |z| = r.

Corollary 3.5 Let f ∈ T belong to the class Cq (α) , q ∈ (0, 1) , α ∈ [0, 1) . Then,

r − 1− α(
[2]q − α

)
[2]q

r2 ≤ |f (z)| ≤ r +
1− α(

[2]q − α
)
[2]q

r2, |z| = r, r ≤ 1,

such that equality is achieved for the function

f (z) = z − 1− α(
[2]q − α

)
[2]q

z2, |z| = r.
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Remark 3.6 Numerous consequences of the results obtained in the above corollaries can be given for different
values of parameters λ and α .

The related results obtained in Corollaries 3.4 and 3.5 for the classes S∗ (α) and C (α) , respectively,
were obtained by Silverman [25] as follows.

Theorem 3.7 (see [25], Theorem 4) If f ∈ S∗ (α) , α ∈ [0, 1) , then

r − 1− α

2− α
r2 ≤ |f (z)| ≤ r +

1− α

2− α
r2, |z| = r, r ≤ 1

such that equality is achieved for the function

f (z) = z − 1− α

2− α
z2, |z| = r.

Corollary 3.8 (see [25], Corollary of the Theorem 4) If f ∈ C (α) , α ∈ [0, 1) , then

r − 1− α

2 (2− α)
r2 ≤ |f (z)| ≤ r +

1− α

2 (2− α)
r2, |z| = r, r ≤ 1

such that equality is achieved for the function

f (z) = z − 1− α

2 (2− α)
z2, |z| = r.

The following theorem is the growth theorem for the functions belonging to class Pq(λ,A,B) .

Theorem 3.9 Let f ∈ T belong to the class Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] . Then,

1−
(1− β) [2]q(

[2]q − β
) [

1 +
(
[2]q − 1

)
λ
]r ≤ |Dqf(z)| ≤ 1 +

(1− β) [2]q(
[2]q − β

) [
1 +

(
[2]q − 1

)
λ
]r,

|z| = r, r ≤ 1,

where β = 1−A
1−B ,−1 ≤ B < A ≤ 1 , such that equality is achieved for the function

f (z) = z −
(1− β) [2]q(

[2]q − β
) [

1 +
(
[2]q − 1

)
λ
]z2, |z| = r. (3.4)

Proof Let f ∈ Pq(λ,A,B), q ∈ (0, 1) , λ ∈ [0, 1] . By simple computation, we obtain

|Dqf(z)| ≤ 1 +

∞∑
n=2

[n]q an
∣∣zn−1

∣∣ ≤ 1 + r

∞∑
n=2

[n]q an.

Using the second assertion of the Theorem 2.8, we obtain

|Dqf(z)| ≤ 1 +
(1− β) [2]q(

[2]q − β
) [

1 +
(
[2]q − 1

)
λ
]r.
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Similarly, we can easily show that

|Dqf(z)| ≥ 1−
∞∑

n=2

[n]q an
∣∣zn−1

∣∣ ≥ 1−
(1− β) [2]q(

[2]q − β
) [

1 +
(
[2]q − 1

)
λ
]r.

Thus, the proof of the inequalities is completed.
We can easily show that equalities are attained in the inequalities when the function f (z) is chosen as

in (3.4).
With this, the proof of Theorem 3.9 is completed. 2

Remark 3.10 Numerous consequences of the results obtained in Theorem 3.9 can be given for different values
of parameters A,B and λ .
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