
Journal of Computational and Applied Mathematics 259 (2014) 226–232

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

The generalized Baskakov type operators
Sevilay Kırcı Serenbay a,∗, Çiğdem Atakut b, İbrahim Büyükyazıcı b
a Başkent University, Department of Mathematics Education, 06530 Ankara, Turkey
b Ankara University, Faculty of Science, Department of Mathematics, Tandogan 06100, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 2 September 2012
Received in revised form 2 July 2013

MSC:
41A25
41A36

Keywords:
Baskakov type operators
Finite sum
Linear positive operator
Approximation

a b s t r a c t

The use of Baskakov type operators is difficult for numerical calculation because these
operators include infinite series. Do the operators expressed as a finite sum provide the
approximation properties? Furthermore, are they appropriate for numerical calculation?
In this paper, in connection with these questions, we define a new family of linear positive
operators including finite sum by using the Baskakov type operators. We also give some
numerical results in order to compare Baskakov type operators with this new defined
operator.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

A general construction of Baskakov operators based on a sequence of functions {ϕn} (n = 1, 2, . . .) ϕn : C → C , having
the following properties

(i) For every n = 1, 2, . . . ϕn is analytic on a domain Dn, containing the disc Bn = {z ∈ C : |z − bn| ≤ bn} , limn→∞ bn =

∞;
(ii) ϕn(0) = 1 (n = 1, 2, . . .);
(iii) ϕn (n = 1, 2, . . .) is completely monotone on [0, bn], i.e., (−1)k ϕ(k)n (x) ≥ 0 for any k = 0, 1, 2, . . .;
(iv) there exists a positive integerm(n), such that

ϕ(k)n (x) = −nϕ(k−1)
m(n) (x)


1 + αk,n(x)


, x ∈ [0, bn] (n, k = 1, 2, . . .)

where αk,n(0) converges to zero for n → ∞ uniformly in k;
(v) limn→∞

n
m(n) = 1.

Under these conditions we will consider the following Baskakov type operators

Ln (f , x) =

∞
k=0

(−x)k

k!
ϕ(k)n (x)f


k
n


, 0 ≤ x ≤ bn. (1)

It is obvious that Ln translated a continuous function with the growth condition f (x) =: O

x2

at infinity to such a type

of function, which may be seen from the properties (2)–(4).
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Lemma 1. The following equalities hold:

Ln (1, x) = 1, (2)

Ln (t, x) =

1 + α1,n(0)


x, (3)

Ln

t2, x


=

m(n)
n


1 + α1,m(n)(0)


(1 + α2,n (0))x2 +

(1 + α2,n(0))
n

x. (4)

Proof. Since ϕn (n = 1, 2, . . .) be analytic on a domain Dn, we have

ϕn(y) =

∞
k=0

(y − x)k

k!
ϕ(k)n (x).

By condition (ii), for y = 0 we get

Ln (1, x) =

∞
k=0

(−x)k

k!
ϕ(k)n (x) = 1.

Now, we consider the case Ln (t, x) as follows:

Ln (t, x) =

∞
k=0

(−x)k

k!
ϕ(k)n (x)

k
n

=
−x
n

∞
k=1

(−x)k−1

(k − 1)!
ϕ(k)n (x)

=
−x
n

∞
k=0

(−x)k

k!
ϕ(k+1)
n (x).

From the equality ϕ(r)n (0) =


∞

k=0
(−x)k

k! ϕ
(k+r)
n (x)we have

ϕ′

n(0) =

∞
k=0

(−x)k

k!
ϕ(k+1)
n (x)

therefore we get,

Ln (t, x) =
−x
n
ϕ′

n(0).

From condition (iv), we obtained the desired result. (4) can be proved similarly. �

When bn = b in (1), in the case when all functions ϕn, n = 1, 2, . . . , are analytic on the fixed disc B = {z ∈ C :

|z − b| ≤ b} ⊂ D where D is a domain, the sequence of operators (1) were investigated by many authors (see, for example
[1–5]).

But all of these investigations are devoted to the problemof approximation of a function belonging to the classmentioned
above and we do not know of any further result on approximation theorems in polynomial weighted spaces, given in [6] for
a special Baskakov operator, which may be obtained from (1) in the case of

ϕn(x) =
1

(1 + x)n
, x ≥ 0, n = 1, 2, . . . .

In [7], Gadziev and Atakut investigated the approximation of continuous functions having polynomial growth at infinity,
by the operator given in (1). They also gave an estimate for a difference |Ln (f , x)− f (x)| on any finite interval through the
modulus of continuity of a function f and the theorem on weighted approximation on all positive semi-axes.

Note that a weighted Korovkin’s type theorem was proven in [8,9] and we need a special case of this theorem.
Let B2m[0,∞) be the space of all functions, satisfying the inequality

|f (x)| ≤ Mf

1 + x2m


, x ≥ 0, m ∈ N (5)

where Mf is constant, depending on a function f and let C2m [0,∞) consist of all continuous functions belonging to
B2m[0,∞). Let also C0

2m [0,∞) be a subset of functions in C2m [0,∞) for which

lim
x→∞

f (x)
1 + x2m

(6)

exists finitely.
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Theorem 2. Let Tn be the sequence of linear positive operators, acting from C2m [0,∞) to B2m [0,∞)which satisfy the conditions

lim
n→∞

∥Tn (tυ , x)− xυ∥C2m[0,∞) = 0, υ = 0,m, 2m

where

∥f ∥C2m[0,∞) = sup
x≥0

|f (x)|
1 + x2m

.

Then for any function f ∈ C0
2m [0,∞),

lim
n→∞

∥Tnf − f ∥C2m[0,∞) = 0

and there exists a function f ∗
∈ C2m [0,∞) /C0

2m [0,∞) such that

lim
n→∞

Tnf ∗
− f ∗


C2m[0,∞)

> 1.

Proof. The proof of this theorem can be seen in [8,9]. �

Lemma 3 ([7]). For any natural number υ ,

Ln (tυ , x) = α (υ, n) xυ +

υ−1
k=1

ψk,υ(x)
nk

where ψk,υ(x) k = 1, . . . , υ − 1 are bounded functions on any finite closed interval and

lim
n→∞

α (υ, n) = 1.

Theorem 4 ([7]). For any function f ∈ C0
2m [0,∞),

lim
n→∞

sup
0≤x≤bn

|Ln (f ; x)− f (x)|
1 + x2m

= 0.

Lemma 5 ([7]). For any natural number m,

lim
n→∞

Ln

|t − x|2m ; x


= 0.

2. Construction of the new type Ln operators including finite sum

In this study, inspired by [10], we replace the infinite sum in the generalized Baskakov type operators by a truncated
sum. It shows the same approximation properties of Ln operators.

Now we give the generalization of Ln operators of one variable including finite sum based on the above idea.

Definition 6. For f ∈ C2m [0,∞), we define the sequence of operators Gn by the formula

Gn (f , sn, x) :=

[n(x+sn)]
k=0

(−x)k

k!
ϕ(k)n (x)f


k
n


(7)

x ∈ [0,∞) , n ∈ N

where (sn)∞1 is a sequence of positive numbers such that limn→∞ sn = ∞ and [n (x + sn)] denotes the integral part of
n (x + sn).

We can easily see that the Gn operator defined by (7) is a sequence of linear positive operators acting from C2m [0,∞) to
B2m [0,∞).

Now we give the approximation theorem for Gn operators.

Theorem 7. For m ∈ N and Gn defined by (7), we have

lim
n→∞

Gn (f , sn, x) = f (x), f ∈ B2m

uniformly on every interval [x1, x2] , x2 > x1 ≥ 0.
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Proof. Let f ∈ B2m and m ∈ N. From (1) and (7) we obtain

Gn (f , sn, x)− f (x) =

[n(x+sn)]
k=0

(−x)k

k!
ϕ(k)n (x)f


k
n


− f (x)

=

∞
k=0

(−x)k

k!
ϕ(k)n (x)f


k
n


− f (x)−

∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x)f


k
n


= Ln (f , x)− f (x)− Rn (f , sn, x) ; x ∈ R0, n ∈ N

where

Rn (f , sn, x) =

∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x)f


k
n


.

Using the elementary inequality (a + b)k ≤ 2k−1

ak + bk


, a, b > 0, k ∈ N0, we have

|f (t)| ≤ K1

1 + t2m


≤ K1


1 + (|t − x| + x)2m


≤ K1


1 + 22m−1 

|t − x|2m + x2m

.

Using this inequality and (1), we get

|Rn (f , sn, x)| ≤

∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x)

f  k
n


≤

∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x) K1


1 + 22m−1

 kn − x
2m + x2m



≤ K1


1 + 22m−1x2m

 ∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x)+ 22m−1

∞
k=0

(−x)k

k!
ϕ(k)n (x)

 kn − x
2m


= K1


1 + 22m−1x2m

 ∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x)+ |22m−1Ln


|t − x|2m , x


.

We remark that

∞
k=[n(x+sn)]+1

(−x)k

k!
ϕ(k)n (x) ≤

∞
sn<|(k/n)−x|

(−x)k

k!
ϕ(k)n (x)

≤

∞
sn<|(k/n)−x|

(−x)k

k!
ϕ(k)n (x)

|(k/n)− x|2m

s2mn

≤
1
s2mn

∞
k=0

(−x)k

k!
ϕ(k)n (x)

 kn − x
2m

=
1
s2mn

Ln

|t − x|2m , x


this implies that

|Rn (f , sn, x)| ≤ K1


1 + 22m−1x2m

s2mn
+ 22m−1


Ln

|t − x|2m , x


.

From the limn→∞ sn = ∞ and Lemma 5,

lim
n→∞

Rn (f , sn, x) = 0

uniformly on every interval [x1, x2] , x2 > x1 ≥ 0, which completes the proof of theorem.
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3. Construction of the new Lm,n operators of two variables including finite sum

Now, we introduce certain linear positive operators in polynomial weighted spaces of the function of two variables.
For natural numbers p, q, let B2p,2q be the space of all functions satisfying the inequality

|f (x, y)| ≤ Mf

1 + x2p

 
1 + y2q


, x ≥ 0, y ≥ 0

where Mf is constant, depending on a function f . We denote by C2p ,2q the space of all continuous functions belonging to
B2p,2q and by C0

2p ,2q a subset of functions in C2p ,2q for which

lim
x,y→∞

f (x, y)
1 + x2p

 
1 + y2q


exists finitely.

We define the generalized Baskakov type operators of two variables as the following formula

Lm,n (f ; x, y) =

∞
j=0

∞
k=0

(−x)j

j!
(−y)k

k!
ϕ(j)m (x)ϕ

(k)
n (y)f


j
m
,
k
n


. (8)

The following theorem can be proved, as in the proof of Theorem 4 [7, p. 37].

Theorem 8. For any function f ∈ C0
2p ,2q

lim
m,n→∞

sup
0≤x≤bn
0≤y≤bm

Lm,n (f ; x, y)− f (x, y)


1 + x2p
 

1 + y2q
 = 0.

From this limit value it was deduced that

lim
m,n→∞

Lm,n (f ; x, y) = f (x, y) , (x, y) ∈ [0,∞)× [0,∞)

uniformly on every rectangle 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Now, we give in the following a new type of operators by Lm,n.

Definition 9. For fixed p, q ∈ N, we define the sequence of operators Gm,n by the formula

Gm,n (f ; sm, tn; x, y) :=

[m(x+sm)]
j=0

[n(y+tn)]
k=0

(−x)j

j!
(−y)k

k!
ϕ(j)m (x)ϕ

(k)
n (y)f


j
m
,
k
n


f ∈ C2p ,2q, (x, y) ∈ [0,∞)× [0,∞) (9)

where (sm)∞1 and (tn)∞1 are given sequences of positive numbers such that limm→∞ sm = ∞ and limn→∞ tn = ∞.

We can easily see that Gm,n operators defined by (9) are a sequence of linear positive operators.
By using Theorem 8 and (8), we can prove the basic property of Gm,n.

Theorem 10. For n,m ∈ N and Gm,n defined by (9), we have

lim
m,n→∞

Gm,n (f ; sm, tn; x, y) = f (x, y) , f ∈ C2p ,2q

uniformly on every rectangle 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Proof. Firstly, we suppose that f ∈ C2p ,2q. For p, q ∈ N, we have

|f (t, z)| ≤ K2

1 + t2p

 
1 + z2q


≤ K2


1 + (|t − x| + x)2p

 
1 + (|z − y| + y)2q


≤ K2


1 + 22p−1 

|t − x|2p + x2p
 

1 + 22q−1 
|z − y|2q + y2q


.

Using this inequality and (8), we get

Gm,n (f ; sm, tn; x, y)− f (x, y) = Lm,n (f ; x, y)− f (x, y)− Rm,n (f ; sm, tn; x, y)

where

Rm,n (f ; sm, tn; x, y) =

∞
j=[m(x+sm)]+1

∞
k=[n(y+tn)]+1

(−x)j

j!
ϕ(j)m (x)

(−y)k

k!
ϕ(k)n (y)f


j
m
,
k
n


, (x, y) ∈ [0,∞)× [0,∞) .
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Table A1

n 15 50 100

f (x) = e−x 0.006734699 0.0067346999 0.0067946999
Gn(f , sn, x) 0.010702892 0.0070859750 0.0067944861
Ln (f , x) 0.010702903 0.0070859752 0.0067944865

Table A2

m, n 3, 3 7, 7 10, 10

f (x, y) 0.2549945975 0.2549945975 0.2549945975
Gm,n(f ; sm, tn; x, y) 0.2486221351 0.2582780079 0.2570681365
Lm,n (f ; x, y) 0.2702365567 0.2582874809 0.2570681388

We note thatRm,n (f ; sm, tn; x, y)
 ≤

∞
j=[m(x+sm)]+1

∞
k=[n(y+tn)]+1

(−x)j

j!
ϕ(j)m (x)

(−y)k

k!
ϕ(k)n (y)

f  j
m
,
k
n


≤ K2

∞
j=[m(x+sm)]+1

(−x)j

j!
ϕ(j)m (x)


1 + 22p−1

 jm − x
2p + x2p



×

∞
k=[n(y+tn)]+1

(−y)k

k!
ϕ(k)n (y)


1 + 22q−1

 kn − y
2q + y2q


.

Performing the same calculations as in the second part of Theorem 7, we obtain

∞
j=[m(x+sm)]+1

(−x)j

j!
ϕ(j)m (x)


1 + 22p−1

 jm − x
2p + x2p


≤


1 + 22p−1x2p

s2pm
+ 22p−1


Lm,n


|t − x|2p , x


and

∞
k=[n(y+tn)]+1

(−y)k

k!
ϕ(k)n (y)


1 + 22q−1

 kn − y
2q + y2q


≤


1 + 22q−1y2q

t2qn
+ 22q−1


Lm,n


|z − y|2q , y


.

Using these inequalities, we get

lim
m,n→∞

Rm,n (f ; sm, tn; x, y) = 0

uniformly on every rectangle 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Remark 11. If we select ϕn(x) =
1

(1+x)n and ϕm(y) =
1

(1+y)m in Theorem 10, we obtain the results given in [10].

For a given function f , we give two examples to show the values of Gn and Gm,n operators including finite sum and the
generalized Baskakov operators at x-fixed point.

We also give an example in which we see that the values of the generalized Baskakov operators Ln including infinite sum
are not calculated but the values of the operators Gn defined by (7) are calculated at some x-fixed point.

3.1. Some examples

Example 12. For n = 5, 50, 100 and f (x) = e−x, x = 5 and sn = n, some numerical values of Gn(f , sn, x), Ln (f , x) and f (x)
are given together in Table A1.

Example 13. For n,m = 1, 5, 10 and f (x, y) = e−
√
x ln(y + 1), x = 1, y = 1 and sm = ln(m), tn = ln(n), some numerical

values of Gm,n(f ; sm, tn; x, y), Lm,n (f ; x, y) and f (x, y) are given together in Table A2.

Baskakov operators and their various modifications require estimations of infinite series which in a certain sense restrict
their usefulness from the computational. Let us show this with a following example.

Example 14. For n = 10, 50, 100 and f (x) = e−
√
x, x = 2 and sn = ln(n), some numerical values of Gn(f , sn, x) and f (x) are

given in Table A3.
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Table A3

n 10 50 100

f (x) = e−
√
x 0.24367345 0.24367345 0.24367345

Gn(f , sn, x) 0.24856630 0.24414914 0.24373019
Ln (f , x) Not calculated Not calculated Not calculated

Remark 15. Due to the intensive development of q-calculus and its applications in various fields such as mathematics,
mechanics, and physics, the applications of q-calculus in the area of approximation theory have emerged. In recent years,
the convergence of the q-generalization of linear positive operators and their generalization has been investigated by
many authors. See [11] for more details on this topic. The q analogue of the operators Gn and Gm,n defined by (7) and (9),
respectively, in this paper, can be defined and approximation properties can be studied in an elaborate manner in future
studies.
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