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Abstract

The Quadratic Assignment Problem (QAP) is a well known combinatorial optimization problem with a diverse set of applications.

It can be transformed into many problems such as the travelling salesman, weapon target assignment, and query optimization in

distributed databases. Exhaustive search methods are inadequate to solve large data sets. Genetic algorithms and tabu search

meta-heuristics may provide near optimal solutions for large QAP instances taking a reasonable time to complete. In this paper, we

present a new recombination operator based on Order-1 crossover algorithm. The suggested approach runs quick sort partitioning

algorithm to generate different chromosomes from partitions. The minimum cost partition produces offsprings with the other

chromosome. The proposed approach shows outstanding performance especially for instance sizes smaller than 50 with respect to

the optimal results proposed in QAPLIB.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

A fundamental class of optimization problems involves assigning assets to tasks to minimize a desired cost func-

tion. These problems are categorized as Assignment Problems1. Variations of these problems have been studied over

the years with a wide range of applications in the domains of telecommunications, transportation systems and signal

processing2. The classical approach to the Quadratic Assignment Problem (QAP) was first introduced by Koopmans

and Beckmann3 as a mathematical model for the location of indivisible economic activities. Since then it has been

one of the most interesting challenges for scientists having been used for modelling a great variety of problems. Type-

writer keyboard design, backboard wiring4, layout design5, turbine balancing6, scheduling7, and data allocation8 are

some of the problems that have been successfully modeled as QAP. The service allocation problem with the purpose

∗ Umut Tosun. Tel.: +0-090-312-2466661/2099 ; fax: +0-090-312-2466660.

E-mail address: utosun@baskent.edu.tr

© 2014 Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
Selection and Peer-review under responsibility of the Program Chairs. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.394&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.394&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


30   Umut Tosun  /  Procedia Computer Science   32  ( 2014 )  29 – 36 

of minimizing the container re-handling operations at a shipyard9, travelling salesman, bin-packing, maximum clique,

linear ordering, and the graph-partitioning problem are among the interesting applications of the QAP.

In its simplest form, the QAP is the problem of assigning n facilities to n locations. The cost is calculated as

multiplication of flow between the facilities and location distances. Initial cost of placing facilities to the locations

can be added to this cost optionally. The objective is to find an allocation such that the total cost of allocating and

operating all facilities is minimized. The QAP can be formally modeled by using three n×n matrices, A, B, and C.

A = (aik) (1)

where aik is the flow amount from facility i to facility k.

B = (b jl) (2)

where b jl is the distance from location j to location l.

C = (ci j) (3)

where ci j is the cost of placing facility i at location j.
The Koopmans-Beckmann form of QAP can be written as:

minφεS n (

n∑

i=1

n∑

k=1

aikbφ(i)φ(k) +

n∑

i=1

ciφ(i)) (4)

where Sn is the permutation set from 1 through n. The product aikbφ(i)φ(k) is the transportation cost caused by

settling facility i to location φ (i) and facility k to location φ (k). In this paper we first give a formal description of

the QAP. In Section 2 the related work on QAP is explained. Section 3 introduces the Order-1 crossover and the

suggested crossover operators. The environment and the test results obtained with different instances of the QAPLIB

are discussed in Section 4 . Finally, Section 5 presents our concluding remarks

2. Related Work

The QAP has been studied extensively since it was introduced in 1957. It is proven to be NP-complete10, so that

no polynomial time algorithm is able to exactly solve this problem for larger data sets. Several algorithms have been

proposed for both exact and approximate solutions to the problem. Exact algorithms are limited to solving small

data sets of the QAP with massively parallel computers whereas metaheuristics can provide near-optimal solutions

within reasonable optimization times. This property of metaheuristics has made them prominent for solving the QAP
instances, therefore many researchers have proposed different heuristics or hybrid approaches to solve this problem.

In this section, we present a summary of the successful approaches in the literature.

The applicability of the QAP to the solution of many different problems has made it the subject of extensive re-

search area for exhaustive and metaheuristic strategies. Small size QAP instances are appropriate for exact solutions

but the larger instances cannot be solved in reasonable times due to the computational limits. Therefore, metaheuristic

approaches have gained a reputation for their ability to produce high-quality solutions within the computational lim-

itations. Simulated Annealing11, 12, Neural Networks13, Genetic Algorithms (GAs)14, 15, 16, GRASP17, Tabu Search

(TS)18, and Ant Colony Optimization19 are some of the well-known metaheuristics that have been successfully applied

to the QAP.

The solution provided by TS procedure is combined with a so-called robust tabu search, RTS by Taillard20, by

Misevic̆ius22 while perturbing the solution via diversification operators. This algorithm effectively explores the sym-

metric and asymmetric instances given by Taillard from the QAPLIB21. Hybrid algorithms which exploit RTS like

sequential metaheuristics, produce high quality solutions in combination with GA variants, as shown by Misevic̆ius22

where two GAs are combined with RTS based on diversification operators. The first algorithm applies a ruin-and-

recreate strategy called M-GA/TS and recreates a solution that has been perturbed by the ruin procedure or the

crossover. The second algorithm M-GA/TS-I perturbs the solutions provided by the GA operators by applying a

random ruin procedure. Ahuja et al.23 and Drezner24 have also successfully incorporated GA variants into TS. The

algorithms developed by Drezner24, 25 perform well especially on instances given by Skorin-Kapov in the QAPLIB.

The D-GA/SD algorithm developed by Drezner25 implements a crossover operator called a merging process, coupled

with a greedy local search that executes swaps until a local optimum is found.
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Fig. 1: Steps of Order 1 crossover.

Algorithm 1 Modified Partition Operator for Sorted Crossover

partition(array, left, right, pivot) {
keep the partition with smallest cost;

pivotValue = array[pivot];

swap array[pivot] and array[right];

store = left;

for i from left to right - 1

if (array[i] <= pivotValue) {
swap array[i] and array[store];

store++;

}
swap array[store] and array[right];

return store;

}
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Fig. 2: Instance size vs. time in seconds.
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Fig. 3: Instance size vs. Gap btw. optimal solutions.

Table 1: GAP vs. Execution Times for Order-1, Sorted and 2-Sorted crossover.

FO(GAP)% Sorted(GAP)% 2Sorted(GAP)% time1(sec.) time2(sec.) time3(sec.)
bur26a 1,21 1,08 0,92 7,22 19,71 20,12
bur26b 1,30 0,93 0,65 8,60 24,99 25,37
bur26c 1,75 1,51 1,31 8,70 18,97 25,66
bur26d 1,55 1,35 0,56 7,67 23,20 30,20
bur26e 1,15 1,08 1,08 6,99 17,46 28,86
bur26f 1,49 0,56 0,85 7,00 17,24 28,65
bur26g 1,72 0,74 1,28 7,24 17,44 21,68
esc16a 2,94 2,94 0,00 8,42 11,38 12,41
esc16b 0,00 0,00 0,00 9,14 10,61 13,90
esc16c 0,00 0,00 0,00 8,83 10,68 12,62
esc16d 0,00 0,00 0,00 7,30 11,57 14,86
esc16e 0,00 0,00 0,00 7,29 11,82 11,30
esc16f 0,00 0,00 0,00 10,20 11,81 13,48
esc16g 7,69 7,69 7,69 7,43 10,48 11,97
esc16h 0,00 0,00 0,00 6,37 9,37 11,80
esc16i 0,00 0,00 0,00 7,47 15,20 12,55
esc16j 0,00 0,00 0,00 8,79 21,70 13,49
esc32c 0,93 0,31 0,62 7,36 45,10 41,55
esc32e 0,00 0,00 0,00 8,23 40,65 48,71
esc32f 0,00 0,00 0,00 8,03 27,97 36,26
esc32g 0,00 0,00 0,00 8,31 24,88 36,42
had12 0,00 0,00 1,33 6,63 8,33 10,69
had14 1,17 0,07 0,29 6,48 10,01 9,54
had16 1,18 0,91 0,38 6,52 10,38 10,89
had18 1,12 0,56 0,75 7,07 11,02 13,85
had20 2,31 1,62 1,39 6,77 11,58 15,42
lipa30a 3,19 2,93 3,61 7,22 21,63 32,70
lipa50a 2,27 2,24 2,20 8,69 85,63 141,50
lipa60a 2,09 1,95 1,92 10,00 121,40 233,65
lipa70a 1,81 1,80 1,83 10,76 229,24 365,97
lipa80a 1,65 1,60 1,65 12,55 340,41 574,34
lipa90a 1,53 1,54 1,46 16,90 508,97 954,09
nug18 7,56 6,32 4,97 6,15 8,90 12,06
Tai15b 0,95 0,77 0,80 5,98 7,04 12,02
Tai25a 9,84 7,61 9,82 6,40 12,54 21,19
Tai64c 5,31 2,42 3,56 9,57 161,69 330,23
Tai80a 11,44 10,94 11,42 11,49 302,33 594,03
Tai100a 11,02 10,62 9,55 14,22 587,06 1025,65
wil50 7,65 7,18 7,52 7,62 75,94 127,04
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Fig. 4: Population size vs. Gap btw. optimal solution for Nug18.
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Fig. 5: Population size vs. time in seconds for Nug18

3. Order-1, Sorted and 2-Sorted Crossover Operators

GAs generate new individuals by guaranteeing that the best individuals will not be discarded in future generations.

In this algorithm, the fittest individuals are copied into the next generations. The crossover operator generates new

individuals by recombining the characteristics of parents. For each pair of individuals, the parent chromosomes are

split into parts and genes are exchanged to generate new chromosomes. Individuals not subjected to any operation are

copied into the next generation.

The idea of Order 1 crossover is to preserve the relative order that the genes occur in the parent chromosomes. An

arbitrary part from the first parent is chosen and this part is copied to the first child with the same order as in the first

parent. Then, the rest of the genes in the first parent are copied to the first child as in the order of the second parent.

The second child is created analogously as shown in Figure 126.
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Fig. 6: Generation size vs. Gap btw. optimal solution for Nug18.
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Fig. 7: Generation size vs. time in seconds for Nug18

Sorted Crossover runs the quicksort27 partitioning algorithm and finds the smallest cost partition generated to

crossover with the other chromosome. 2-Sorted crossover is the application of the crossover strategy in two way to

both chromosomes. Algorithm 1 shows the modified partitioning algorithm of quicksort27.

4. Experimental Results

We tested the proposed algorithms through a number of experiments. In each test, one parameter varies while

fixing the others. The algorithms are tested by the same test data. Experiments are performed using a 2.21 GHz AMD

Athlon (TM) 64x2 dual processor with 2GB RAM and MS Windows 7 (TM) operating system. The implementation

language is C++. We reported the best run over 10 consecutive runs. GAP is the percentage gap between the

solution found and the optimal solution reported in the QAPLIB. Table 1 shows the results of applying Order-1,
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Sorted and 2-Sorted crossover operators on some selected instances from the QAPLIB. Figure 2 and Figure 3 show the

performance of crossover operators on various instances of size 10 to 100 from the QAPLIB. Sorted Crossover shows

better performance than other algorithms for instance sizes smaller than 50. The execution times of the operators are

feasible for sizes smaller than 50 either. However, sorted and 2-sorted crossover operators have little or no effect in

solution quality for instance sizes larger than 50 and the execution time of the algorithm grows exponentially. This

is a fact resulting from the extra partitioning cost of quicksort algorithm on partition generation. 2-Sorted crossover

fails to outperform Sorted and Order-1 crossovers because it is elitist and it does not include the diversification of

chromosomes in its plan. Figure 4 and Figure 5 show the effect of increasing the population size of genetic algorithm.

The algorithm performance decreases steep for population sizes up to 1000. This is meaningful because the genetic

algorithm has a breakthrough at some point and it is more difficult to improve the solution from that point. Sorted

Crossover performs better than other operators. The execution times are close to linear. Figure 6 and Figure 7 show

the performance of the crossover operators when number of generations are increased. Working with larger population

sizes have more effect than working with larger generation sizes on the performance of the crossover operators. In our

experiments, we used a mutation rate of 0.01 and truncation is used for population selection.

5. Conclusions and Future Work

In this paper, several modifications on Order-1 crossover operator was discussed. Datasets from QAPLIB were

used to compare the suggested crossover operators. We used quicksort partitioning to generate a low cost chromo-

some and produce the offsprings. The partitioning algorithm may be applied to both of the chromosomes or to only

one chromosome. Sorted crossover shows better results than 2-sorted crossover because most of the time 2-sorted

chromosome has an elitist behavior. Even though, sorted and 2-sorted crossover show good performance results

for instance sizes smaller than 50, they run in higher execution times for larger instances. Sorted crossover is very

promising and observed to be the optimal algorithm running on meaningful times. However, partitioning adds a con-

siderable cost to order-1 crossover. Hybrid algorithm performance of the suggested crossover methods and different

modifications that run in low execution times may be of interest in the future.
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