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1. Introduction
Psoriasis is a chronic inflammatory disorder involving the 
skin. Genetic, environmental, and immunological factors 
play important roles in the development of the disease. 
Its incidence may change in different parts of the world 
depending on environmental, ethnic, and geographic 
differences. Both sexes are affected equally by the disease, 
and patients are usually diagnosed between 15 and 30 
years of age. Although it can be seen in almost all races, 
it is rare in Asia and Africa. It has an overall prevalence of 
2%–3% in the general population (1,2). Its prevalence in 
children is reported to range from 0% (Taiwan) to 2.1% 
(Italy), and in adults from 0.91% (United States) to 8.5% 
(Norway). In the United States, the annual incidence 
estimate in children is 40.8/100,000, while in adults the 
annual incidence varies from 78.9/100,000 (United States) 
to 230/100,000 (Italy) (1). The prevalence in the Turkish 
population is reported as 1.3% (2).  

Bacteria are known to play an important role in the 
development and chronicity of chronic inflammatory 
diseases such as atopic dermatitis and psoriasis. The 
relationship between bacterial colonization or infection 
of the skin and the development of inflammatory skin 
diseases is well described in studies reporting the relapse 
of guttate psoriasis following streptococcal pharyngitis 
and the development of atopic dermatitis following 
Staphylococcus aureus colonization of the skin (3,4). 

S. aureus colonizes the anterior nares of 20%–40% 
of the healthy adult population. It can also colonize the 
perineum, perianal region, axilla, gastrointestinal tract, 
and skin folds. Trauma, burns, diabetes, and immune 
suppression can lead to opportunistic infections with this 
colonizing pathogen (5). 

S. aureus can be the cause of a wide spectrum of 
infectious diseases due to its many virulence factors, 
which facilitate its spread in host tissues and its escape 
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from the host’s immune responses. Bacterial enzymes and 
toxins, such as capsular polysaccharide, plasma coagulase, 
extracellular matrix components, protein A, fibronectin 
binding factor, microbial surface component recognizing 
adhesive matrix molecules, and extracellular proteins 
(i.e. toxins), play important roles in the development and 
occurrence of staphylococcal infections (6,7) . Adherence 
factors (adhesins) promote the colonization of S. aureus on 
host cell surfaces (8–11).

S. aureus produces exotoxins with cytolytic activities. 
These cytolytic toxins (α-, β-, and γ-hemolysins, 
leukocidin, and Panton-Valentine leukocidin [PVL]) lead 
to the formation of pores on target cell membranes. The 
cytoplasmic content of the target cell leaks and the cell lyses. 
PVL is a bicomponent cytolysin (LukF-PV and LukS-PV) 
and is cytotoxic for erythrocytes and leukocytes, just like 
γ-hemolysin and leukocidin, which show high affinity for 
leukocytes. α-Hemolysin is especially responsible for osmotic 
cytolysis of human thrombocytes and monocytes (12–16). 

S. aureus secretes toxic shock syndrome toxin-1 
(TSST-1), staphylococcal enterotoxins A-I (SEA, SEB, 
SECN, SED, SEE, SEG, SEH and SEI), and exfoliative 
toxins A and B (ETA and ETB). Among these, TSST-1 
and staphylococcal enterotoxins belong to the group of 
pyrogenic toxin superantigens (17,18). 

Superantigens (SAgs) are toxins that play a role in T-cell 
proliferation. These toxins cause TSST-1, food poisoning 
(enterotoxins), and staphylococcal scalded skin syndrome 
(ETA and ETB) (19). The issue of whether exfoliative 
toxins have any mitogenic activity on T lymphocytes as 
SAgs is still controversial (20). 

S. aureus has some special proteins that may have an 
effect on innate and acquired immunity. Staphylococcal 
complement inhibitor, chemotaxis-inhibitory protein of 
S. aureus, staphylokinase, extracellular fibrinogen-binding 
protein, extracellular adherence protein, and formyl 
peptide receptor like-1 inhibitory protein are some of 
these special proteins (21–27). 

In this study, in order to contribute to the previous 
studies on whether or not S. aureus colonization is a 
determiner of disease activation in psoriasis patients, we 
evaluated the presence of genes encoding PVL, enterotoxins 
(sea, seb, sec, sed, see, seg, seh, sei, sej), TSST-1 (tst), 
exfoliative toxins (eta, etb), and accessory gene regulatory 
locus (agr) by polymerase chain reaction (PCR) in S. aureus 
isolates obtained from healthy and diseased skin regions 
and anterior nares of psoriasis patients and healthy controls.  

2. Materials and methods
2.1. Patients
Diseased skin, healthy skin (cubital volar region), and 
nasal swabs were obtained from 61 psoriasis patients 
who attended the dermatology polyclinic of the Kırıkkale 

University School of Medicine. The control group consisted 
of 48 healthy volunteers with no personal or family history 
of psoriasis or other inflammatory skin disorders. Nasal 
and cubital volar skin swabs were obtained from the 
control group. Ethics committee approval was received 
for this study from the Ethics Committee of the Kırıkkale 
University Medical Faculty (Approval Number: 2010/004), 
and informed consent was obtained from all study and 
control subjects. 
2.2. Culture
All swabs were cultured on 5% sheep blood agar in the 
Medical Microbiology Department Laboratory of the 
Kırıkkale University School of Medicine. Staphylococcus 
identification was made by conventional microbiological 
methods (Gram staining, catalase, and coagulase tests). 
Methicillin resistance of the isolates was determined by a 
Kirby-Bauer disk diffusion test performed by using 1 µg 
oxacillin and 30 µg cefoxitin disks (Bioanalyse, Turkey) 
according to the Clinical and Laboratory Standards 
Institute instructions (28). Methicillin-resistant S. aureus 
(MRSA) ATCC 43300 and methicillin-sensitive S. aureus 
(MSSA) ATCC 25923 control strains were used as standard 
quality controls for susceptibility testing in the Medical 
Microbiology Department Laboratory of the Başkent 
University School of Medicine. All the strains were stored 
in brain-heart infusion broth containing 20% glycerol at 
–80 °C until molecular testing was performed. 
2.3. Molecular analyses
Molecular analyses of the strains were performed in 
the Molecular Microbiology Diagnostics and Research 
Laboratory of the Ankara University School of Medicine, 
Department of Medical Microbiology. All the strains 
were subcultured on nutrient agar plates, and DNA was 
extracted by boiling. Briefly, 2 loopfuls of pure culture 
were suspended in 500 µL of sterile distilled water and 
boiled at 95 °C for 10 min. The suspension was centrifuged 
at 3500 × g for 5 min, and the supernatant was used for 
PCR analysis. The presence of PVL, enterotoxin and TSST-
1 (sea, seb, sec, sed, see, seg, seh, sei, sej, tst), and exfoliative 
toxin (eta, etb) genes was investigated, and agr typing 
was performed by PCR as described in the literature 
(12,13,29,30). The primer sets used for molecular analysis 
are given in Table 1.
2.4. Statistical analysis
Cochran Q and two-proportion z-tests were performed 
for the statistical analysis of the results using the SPSS 17.0 
(SPSS Inc., Chicago IL, USA). P < 0.05 was considered as 
statistically significant.

3. Results
3.1. Culture results
Of the 61 psoriasis patients, 26 (42.6%) were found to 
carry S. aureus on their diseased and/or healthy skin 
and/or anterior nares. A total of 56 S. aureus strains were 
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Table 1. The primers used for molecular analysis of S. aureus strains. 

Gene Primer (5′-3′) Product size (bp) Reference

sea 
GCAGGGAACAGCTTTAGGC

520

(30)

GTTCTGTAGAAGTATGAAACACG

seb-sec 
ATGTAATTTTGATATTCGCAGTG

643 
TGCAGGCATCATATCATACCA

sec 
CTTGTATGTATGGAGGAATAACAA

283 
TGC AGG CAT CAT ATC ATA CCA

sed 
GTGGTGAAATAGATAGGACTGC

384 
ATATGAAGGTGCTCTGTGG

see 
TACCAATTAACTTGTGGATAGAC

170 
CTCTTTGCACCTTACCGC

seg 
CGTCTCCACCTGTTGAAGG

327 
CCAAGTGATTGTCTATTGTCG

seh 
CAACTGCTGATTTAGCTCAG

360 
GTCGAATGAGTAATCTCTAGG

sei 
CAACTCGAATTTTCAACAGGTAC

465 
CAGGCAGTCCATCTCCTG

sej 
CATCAGAACTGTTGTTCCGCTAG

142 
CTGAATTTTACCATCAAAGGTAC

tst 
GCTTGCGACAACTGCTACAG

559 
TGGATCCGTCATTCATTGTTAA

16S rRNA
GTAGGTGGCAAGCGTTATCC

228 
CGC ACA TCA GC GTC AG

eta
GCAGGTGTTGATTTAGCATT

93

(30)
AGATGTCCCTATTTTTGCTG

etb
ACAAGCAAAAGAATACAGCG 

226
GTTTTTGGCTGCTTCTCTTG

PVL
ATCATTAGGTAAAATGTCTGGACATGATCCA

433 (12,13)
GCA TCA AGT GTA TTG GAT AGC AAA AGC

agr1 GTCACAAGTACTATAAGCTGCGAT      441

(29)

agr2 TATTACTAATTGAAAAGTGGCCATAGC 575

agr3 GTAATGTAATAGCTTGTATAATAATACCCAG    323

agr4 CGATAATGCCGTAATACCCG 659

agr-PanR ATGCACATGGTGCACATGC
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isolated from swab cultures of these 26 patients. Twenty-
four (43%) of the strains were isolated from nasal cultures, 
20 (36%) from diseased skin swabs, and 12 (21%) from 
healthy skin swabs. 

In the control group, only 4 (8.3%) nasal swabs were 
positive for S. aureus colonization. All of the isolated S. 
aureus strains were methicillin-susceptible. 

Nasal S. aureus carriage rate was statistically 
significantly higher in the patient group when compared 
to the control group (36% versus 8.3%, P < 0.001). None 
of the healthy skin cultures yielded S. aureus growth in 
the control group. S. aureus carriage rates on diseased 
and healthy skin of psoriasis patients were statistically 
significantly higher than in the control group (21% versus 
0%, P < 0.001, and 36% versus 0%, P < 0.001). 

In the patient group, culture positivity of diseased skin 
correlated with nasal culture positivity (16 patients carried 
S. aureus both in the nares and on diseased skin, P = 0.453). 
Healthy skin cultures yielded less S. aureus positivity when 
compared to nasal (P < 0.001) and diseased skin (P = 
0.001953) cultures.

3.2. Results of molecular analyses 
None of the S. aureus strains isolated from the study and 
control groups carried PVL or exfoliative toxin genes. 
None of the strains isolated from the control group carried 
toxin genes. In the patient group, 18 (32.1%) of the isolated 
strains carried the sei, 1 (1.8%) carried the seb-sec, and 1 
(1.8%) carried the seg enterotoxin gene (Figure 1). 

Eight of the strains carrying enterotoxin genes were 
isolated from nasal swabs, 6 from diseased skin swabs, and 
4 from healthy skin swabs. 

The differences of toxin genes among isolation sites 
were statistically insignificant (P = 0.135). 

None of the strains isolated from the control group 
carried the agr locus. On the other hand, 11 (19.7%) of the 
S. aureus strains isolated from the patients carried type 1, 7 
(12.5%) carried type 1 + 3, 4 (7.1%) carried type 2, 4 (7.1%) 
carried type 3, and 1 (1.8%) carried type 1 + 2 agr loci (Figure 
2). Twelve of these strains were isolated from nasal swabs, 
10 from diseased skin swabs, and 5 from healthy skin swabs. 
The agr locus was carried at a significantly higher rate in S. 

Figure 1. Enterotoxin genes identified by PCR. M represents 50-bp molecular weight marker (Fermentas, Lithuania), IC represents 
internal control (228-bp product of S. aureus 16S rRNA gene).

Figure 2. agr typing of the strains. M represents 50-bp molecular weight marker (Fermentas, Lithuania). 
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aureus strains isolated from nasal swabs and diseased skin 
swabs than the strains isolated from healthy skin swabs (P 

< 0.05). The distributions of toxin genes and agr types are 
given in Table 2 and Figures 3 and 4.

Table 2. Distribution of S. aureus strains isolated from patients according to their sampling sites, identified enterotoxin genes, and agr types. 

Patient no. Sampling site 
Genes identified
agr types Enterotoxin genes
1 2 3 sei seb-sec seg

1 Nasal       +    
2 Nasal       +    
3 Nasal            
4
 

Diseased skin            
Healthy skin     +      

5
 

Nasal +          
Diseased skin +          

6
 
 

Nasal +    +       
Diseased skin +    +       
Healthy skin     +      

7
 
 

Nasal            
Diseased skin            
Healthy skin            

8
 
 

Nasal       +    
Diseased skin       +    
Healthy skin       +    

9
 
 

Nasal       +    
Diseased skin       +    
Healthy skin       +    

10
 
 

Nasal       +    
Diseased skin       +    
Healthy skin       +    

11
 

Nasal            
Diseased skin            

12
 
 

Nasal            
Diseased skin       +    
Healthy skin       +    

13
 

Nasal       +    
Diseased skin +     +    

14 Nasal            
15
 

Nasal       +    
Diseased skin       +    

16
 
 

Nasal +          
Diseased skin +          
Healthy skin +          

17
 
 

Nasal  +   +       
Diseased skin  +   +       
Healthy skin  +   +       

18
 

Nasal +          
Healthy skin  + +         

19
 

Nasal  +   +       
Diseased skin +          

20
 
 

Nasal     +      
Diseased skin +          
Healthy skin +          

21 Nasal     +      
22
 

Nasal   +        
Diseased skin   +        

23
 

Nasal +     +    
Diseased skin  +   +       

24
 
 

Nasal            
Diseased skin            
Healthy skin            

25 Diseased skin            
26
 

Nasal   +     +  
Diseased skin   +       +
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4. Discussion 
Psoriasis is a chronic inflammatory disease affecting many 
components of the immune system. It is characterized 
by epidermal hyperproliferation and inflammation. Its 
pathogenesis involves complicated relationships among 
many cell types, cytokines, chemokines, and skin-derived 
chemical mediators. The interaction between these 
components leads to dysregulation in the immune system 
(31). 

Bacterial products and SAgs such as staphylococcal 
enterotoxins, TSST-1, exfoliative toxins, streptococcal 
pyrogenic exotoxins, mycoplasma arthritis supernatant, 
chemicals, UV light, and trauma may take part in the 
development or aggravation of inflammatory skin diseases 
(3,4). Toxins and enzymes secreted by the bacteria have an 
important role in staphylococcal infections. Among these, 
enterotoxins are encoded by sea-sej genes, TSST-1 by the 
tst gene, and exfoliative toxins A and B by the eta and etb 
genes (32–34). 

Another important virulence factor of S. aureus is PVL. 
It is responsible for pore formation on the membranes of 
polymorphonuclear leukocytes, leading to cell lysis (12). 
PVL-secreting strains are responsible for severe skin and 
soft tissue infections and necrotizing pneumonia (35). 
None of our patients were colonized with PVL-positive 
or MRSA strains, both of which may be considered as a 
benefit for our patients.

Expression of virulence proteins in S. aureus is under 
the control of RNA III, which is a small RNA molecule 
regulating the expression of S. aureus genes for exoproteins 
and cell membrane proteins. It is the intracellular effector 
of the quorum sensing system. Secreted proteases are 
under the control of the agr gene (36). In our study, 26 
(46.42%) of the 56 S. aureus strains carried the agr locus, 
suggesting that secreted proteases may play a role in the 
aggravation of psoriasis. 

The relationship between bacterial SAgs and skin 
diseases is shown in guttate psoriasis, atopic dermatitis, 
and cutaneous lupus erythematosus. The mechanism of 
how SAgs lead to inflammation is not known extensively. 
SAg-mediated T-cell activation may be involved (35).

In the study of Balcı et al. (37), 64% of the diseased 
and 14% of healthy skin cultures obtained from psoriasis 
patients were found to be positive for S. aureus. They also 
found a significant relationship between toxin production 
of the strains isolated from skin lesions and disease grades 
(37). These results support the findings of previous studies 
(38,39). Tomi et al. (39) showed that 36% of the S. aureus 
strains isolated from skin lesions of psoriasis patients 
secreted toxins. In the same study, psoriasis patients who 
carried toxin-negative and toxin-positive S. aureus strains 
were compared, and disease grades of the patients with 
toxin-positive strains were found to be higher. These 
results show that there is a relationship between toxin-
positive S. aureus colonization and psoriasis activation 
(39). On the other hand, Sayama et al. (40) could only 
demonstrate the presence of enterotoxin (seb) and tst-1 in 
5 of the 100 S. aureus strains isolated from diseased skin 
swabs of psoriasis patients, and they concluded that SAgs 
do not have a role in the development of psoriasis (40). 

In our study, we observed that patients who carry S. 
aureus on psoriasis lesions are more likely to also carry 
S. aureus nasally. Healthy skin culture positivity was 
significantly less prevalent in the patient group. If nasal 
carriage is regarded as the primary focus, psoriasis lesions 
can be considered as more prone to the development of 
S. aureus colonization when compared to healthy skin. 
Another question requiring explanation is the mechanism 
underlying the high frequency of nasal S. aureus carriage 
among psoriasis patients. 

The results of our study demonstrated the presence 
of toxin genes in 20 (35.71%) of the 56 MSSA strains. 
Among diseased skin isolates (n = 7), 6 carried the sei and 
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Figure 3. Toxin and agr locus presence among the strains isolated 
from psoriasis patients according to their sampling sites. 

Figure 4. Enterotoxin and agr type distribution among S. aureus 
strains according to their sampling sites.



1351

GÖÇMEN et al. / Turk J Med Sci

1 the seg gene. Four of the 11 healthy skin isolates carried 
the sei gene, and of the 9 nasal isolates, 8 carried the sei 
gene and 1 the seb-sec genes. There was no difference in 
toxin production of isolates according to their sampling 
sites. On the other hand, the 4 MSSA isolates obtained 
from the control group did not carry toxin genes or the 
agr locus. These findings suggest that enterotoxins may be 
important in the aggravation of psoriasis as suggested in 
previous studies (39,41). Although these previous studies 
emphasized the high prevalence of enterotoxin genes 
in S. aureus strains isolated from psoriasis patients and 
correlated their presence with disease severity, they did 
not investigate the prevalence of enterotoxin I, which was 
the main enterotoxin gene found in our study. Whether 

or not this finding has important correlations with disease 
activation or severity needs further investigation. 

Although there was no correlation between agr 
positivity and isolation sites of S. aureus strains, this 
study showed that S. aureus strains isolated from psoriasis 
patients established a high prevalence for the presence of 
the agr gene locus, which is responsible for the secretion 
of proteases that facilitate the aggregation of the infecting 
strain on to the skin. Thus, the high rate of agr positive 
S. aureus colonization in psoriasis patients may be a 
provocateur factor for disease activation attacks.

As a result, not only S. aureus colonization but also the 
toxin positivity and agr gene presence may be important 
for disease activation in psoriasis patients.
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