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Abstract 

The multiple traveling repairman problem (kTRP) is a generalization of the traveling repairman problem which is also known as 
the minimum latency problem and the deliveryman problem. In these problems, waiting time or latency of a customer is defined 
as the time passed from the beginning of the travel until this customer’s service completed. The objective is to find a Hamiltonian 
Tour or a Hamiltonian Path that minimizes the total waiting time of customers so that each customer is visited by one of the 
repairmen. In this paper, we propose a new mixed integer linear programming formulation for the multiple traveling repairman 
problem where each repairman starts from the depot and finishes the journey at a given node. In order to see the performance of 
the proposed formulation against existing formulations, we conduct computational analysis by solving benchmark instances 
appeared in the literature. Computational results show that proposed model is extremely effective than the others in terms of CPU 
times. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of EWGT2016. 
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1. Introduction 

The Traveling Salesman Problem (TSP) is the basis of the routing problems. The Traveling Repairman Problem 
(TRP) which is also named as the minimum latency problem, the cumulative traveling salesman problem or the 
traveling deliveryman problem (Silva et al., 2012) is a special type of routing problem. In these problems, waiting
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time or latency of a customer is defined as the time passed from the beginning of the travel until this customer’s 
service completed is. The Multiple Traveling Repairman Problem (kTRP) is a generalization of the TRP hence the 
Minimum Latency Problem finds k tours or paths, each starting at the depot and covering all the nodes while 
minimizing total waiting time (latency). Applications of this problem can be found in home delivery of pizzas, 
emergency aid logistics, routing automated guided vehicles in a flexible manufacturing system, school bus routing 
and minimizing average flow time for jobs of scheduling machines (Fischetti et al., 1993). It has been shown kTRP 
is NP-hard (Tsitsiklis, 1992; Archer and Williamson, 2003). Thus, solution strategies for kTRP are concentrated on 
the exact solution procedures by Picard and Queyranne (1978), Lucena (1990), Simchl-Levi and Berman (1991), 
Bianco et al. (1993), Fischetti et al. (1993), Eijl (1995), Wu et al. (2004) and/or heuristics by Blum et al. (1994), 
Goemans and Kleinberg (1998), Ausiello et al. (2000), Arora and Karakostas (2003), Chaudhuri et al. (2003), 
Nagarajan and Ravi (2008), Salehipour et al. (2011), Ngueveu et al. (2010) and Dewilde et al. (2010). 

There exist a few formulations for finding the optimal solution of the problem directly in the literature. Sarubbi et 
al. (2008) applied for the minimum latency problem the model proposed by Picard and Queyranne (1978) for the 
time-dependent the traveling salesman problem. Kara et al. (2008) developed a mixed integer linear programming 
formulation for the minimum latency problem. Mendez-Diaz et al. (2008) suggested an integer programming 
formulation for the traveling deliveryman problem. Angel-Bello et al. (2013) developed two integer programming 
formulations for TRP. They reviewed existing formulations and conducted a comparative computational analysis of 
the formulations. They conclude that one of the new formulations named as model A is superior to the others. The 
emerging developments in the information technology allow us to find optimal solution of some routing problems 
directly by using a suitable software and user friendly formulations. Recently, Kara and Derya (2015) found the 
shortest tour time of 400-node traveling salesman problem with time windows within seconds using CPLEX 12.5. 
Those developments motivate us to develop new mathematical models for the k-traveling repairman problem. 

In this paper, we adapt model A of Angel-Bello et al. formulation to the k-traveling repairman problem and we 
compute the performance of this formulation against the existing k-traveling repairman formulations. The main 
contribution of this paper is to present a new polynomial size integer programming formulation for the k-traveling 
repairman problem that can be used to find optimal solutions of the real life problems. 

In Section 2, we present the definition and application of the k-traveling repairman problem and we investigate 
the existing formulations of the k-traveling repairman problem in the literature. We propose a new mathematical 
model for the k-traveling repairman problem in Section 3. We conduct computational analysis of the proposed model 
against existing models and summarize the results in Section 4. Concluding remarks are outlined in Section 5. 

2. Problem identification and existing formulations 

Given a network G = (V, A) where V= {1, 2… n} is the node set of the customers, {0} is the depot and {n} is the 
terminal node. A = {(i, j): i, j  V, i  j} is the set of arcs. dij is the time of the travel from the node i to the node j. k 
is the number of identical travelers. xij is the decision variable. xij = 1 if the arc (i, j) is on the repairman, and zero 
otherwise. 

With those given above, we define k-TRP as: 

 Each node (customer) is served exactly by one traveler, 
 Each route starts from the depot and ends at the terminal node, 
 The objective is to find a set of k traveler routes of minimum total time passed until the all customers served. 

The mathematical models of the k-repairmen problem in the literature are explained in this Section. Kara et al. 
(2008), by defining additional arc based decision variables yij as; 

yij = if the arc (i,j) is on the path then this variable shows the sequence of node j from the end, and zero otherwise. 
Their formulation has O(n2) binary variables and O(n2) constraints. We named this formulation as M1 and used in 
computational analysis. 

Luo et al. (2014), defined node based decision variables uik as the arriving time of vehicle k to node i and then 
presented an integer programming formulation. This model has exponential number of constraints, thus it is 
insufficient for direct use with an optimizer. 
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Fishetti et al. (1993) presented an integer programming formulation for TRP and defined additional arc based 
decision variables zij as; 
 

1,  if arc(i,j) is on the position m
0,  otherwiseij
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This formulation was developed for the minimum latency problem originally. Onder (2015) transformed this 

formulation to k-traveling repairmen by adding two new constraints, so repairmen exit from the depot and finish at 
the depot. In our study, this formulation is used that it gives a path finishes at a terminal node. This formulation has 
n2 binary variables, nonnegative variables and n2+4n constraints. We named this formulation as YM1 and used in 
computational analysis. 

3. Proposed formulation 

In proposed formulation an artificial position for starting node (depot) is defined as a different notation. This 
artificial depot is represented by n+1. 
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While developing this formulation, the definitions of the decision variables are used as original form for the 
minimum latency problem. The objective function, given in (1), ensures the minimum total waiting time. Constraint 
(2) makes that each node is at one position. Constraint (3) ensures that in each position there must be nodes at most 
the number of repairmen. Constraint (4) provides that k-repairmen exit from the depot. Constraint (6) is about the 
relation between decision variables      and       to determine the last node visited. Constraint (5) ensures that only 
one arc exits from position m and constraint (7) ensures that only one arc arrives in position m+1. 

The objective function is rewritten as meaning and structurally, so the structure and the meaning of objective 
function of the minimum latency problem formulation developed by Angel-Bello et al. are changed completely and 
our objective function is entirely new. In this way, we obtain a new formulation that can solve multiple traveling 
repairmen problem. This formulation has n2 binary variables and 2n2+n+1 constraints, so our formulation is 
polynomial size that can be used directly by an optimizer. We named this formulation as YM2 and used in 
computational analysis. 

4. Computational analysis 

In order to see the performance of the proposed formulation, we conduct a computational analysis. We 
summarize the results in this section. 

Comparisons are made between the formulations of M1, YM1 and YM2 on a set of instances taken from the 
literature (Salehipour et al., 2011). These sets include 10 and 20 node problems. 20 symmetric instances are 
prepared for these sets. Computational comparisons are focused on CPU times. All problems are solved with 
CPLEX 12.6.0.0 by using Intel Core Quad CPU 2.66 GHz and 2 GB RAM computer. The upper time limit is 
defined as 7200 seconds for all computations. Solution values obtained in time limit are used to calculate mean and 
standard deviation. If k is equal to 1, all the formulations can find the optimal solutions for one repairman. 20 
benchmark instances for 10 node problems are solved for k=2 by each formulation. CPU times and optimal values 
are given in Table 1. 

Table 1. CPU times and optimal values of 10 node problems for k=2 

Problem Optimal 

value 

M1 

CPU (Sec) 

YM1 

CPU (Sec) 

YM2 

CPU (Sec) 

Problem Optimal 

value 

M1 

CPU (Sec) 

YM1 

CPU (Sec) 

YM2 

CPU (Sec) 

1 828 0.13 0.16 0.11 11 767 0.10 0.28 0.02 

2 872 0.17 0.22 0.02 12 712 0.14 0.24 0.07 

3 846 0.21 0.44 0.22 13 812 0.34 0.63 0.11 

4 821 0.28 0.28 0.22 14 738 0.27 0.31 0.18 

5 596 0.20 0.24 0.02 15 690 0.21 0.20 0.25 

6 939 0.31 0.28 0.19 16 676 0.47 0.35 0.09 

7 741 0.24 0.29 0.02 17 691 0.11 0.22 0.23 

8 681 0.28 0.30 0.14 18 661 0.27 0.20 0.18 

9 820 0.24 0.35 0.20 19 829 0.21 0.32 0.15 

10 756 0.27 0.60 0.18 20 687 0.30 0.27 0.13 

Mean      - 0.24 0.31 0.14 

Standard 
deviation      - 0.09 0.12 0.08 

 
 According to CPU times, YM2 is faster than the other formulations for 10 node problems and k=2. Mean and 

standard deviation of CPU of the YM2 are considerably smaller than the others. All of these problems can be solved 
in time limit 7200 seconds by all formulations. Also, 20 benchmark instances for 20 node problems are solved for 
k=2 by each formulation. CPU times and optimal values are given in Table 2. 
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Table 2. CPU times and optimal values of 20 node problems for k=2 

Problem Optimal 

value 

M1 

CPU (Sec) 

YM1 

CPU (Sec) 

YM2 

CPU (Sec) 

Problem Optimal 

value 

M1 

CPU (Sec) 

YM1 

CPU (Sec) 

YM2 

CPU (Sec) 

1 1950 379.54 456.47 7.47 11 1697 1990.11 7200 15.35 

2 1655 169.15 1369.75 1.23 12 2000 479.47 1589.03 1.73 

3 1926 401.82 814.67 1.50 13 1879 1032.91 2576.46 3.37 

4 1871 7200 7200 11.30 14 1723 423.04 2131.60 2.00 

5 1724 2153.24 7200 9.50 15 1795 172.51 383.68 2.93 

6 1887 7200 7200 15.97 16 1989 3879.36 7200 4.15 

7 1560 7200 7200 8.46 17 1570 1687.05 7200 2.22 

8 1962 7200 7200 6.87 18 1696 7200 7200 14.97 

9 1989 7200 7200 20.90 19 1859 162.84 146.14 2.38 

10 1948 1489.03 7200 2.66 20 1674 109.04 275.11 1.89 

Mean      - 1037.79 1082.55 6.84 

Standard 
deviation      - 1092.27 876.94 5.97 

 
According to CPU times, YM2 is faster than the other formulations for 20 node problems and k=2. Mean and 

standard deviation of CPU of the YM2 are considerably smaller than the others. Some of these problems cannot be 
solved in time limit 7200 seconds by the other formulations. 

When we look all these values for 10 and 20 node problems and k=2, YM2 model is always superior to the 
others. For this reason, after this stage the performance of YM2 model is searched by increasing problem size and 
changing k values. While these analyses are carried out, the benchmark instances for k-TRP used by Luo et al. 
(2014). In these benchmark instances, there are 6 different data sets named as brd14051, d15112, d18512, fnl4461, 
nrw1379 and pr1002. Each of these sets includes 10 different data. The node numbers of these problems are 29, 39, 
49 as well as one node is depot. Also they use k=6 for 29 node problems, k=8 for 39 node problems and k=10 for 49 
node problems.  

In our study, YM2 model is solved for all these cases. Also, for doing an experimental analysis about k values, 
for 29 node problems YM2 model is solved for k=1, k=2 and k=4, for 39 node problems k=4 and k=6 and for 49 
node problems k=6 and k=8 additionally. YM2 model can solve all these problems for different k values in time 
limit 7200 seconds. 

In Table 3, the average CPU times for 29 node problems for k=1, k=2, k=4 and k=6 are showed. In Table 4, the 
average CPU times for 39 node problems for k=4, k=6 and k=8 are listed. In Table 5, the average CPU times for 49 
node problems for k=6, k=8 and k=10 are given. 

Table 3. Average CPU times for 29 node problems 

Problem Average CPU (Sec) 

 k=1 k=2 k=4 k=6 

brd14051 951.02 596.32 26.48 2.22 

d15112 770.64 691.86 14.78 2.74 

d18512 441.39 272.80 23.00 2.86 

fnl4461 902.51 647.07 12.67 2.00 

nrw1379 368.30 447.98 20.38 2.56 

pr1002 653.71 493.83 24.80 3.05 
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Table 4. Average CPU times for 39 node problems 

Problem Average CPU (Sec) 

 k=4 k=6 k=8 

brd14051 636.98 61.00 13.16 

d15112 1855.41 388.28 9.44 

d18512 2102.10 86.68 7.77 

fnl4461 1271.12 66.74 7.52 

nrw1379 829.32 41.81 15.18 

pr1002 1520.57 158.88 20.44 

Table 5. Average CPU times for 49 node problems 

Problem Average CPU (Sec) 

 k=6 k=8 k=10 

brd14051 1480.20 168.71 29.10 

d15112 1008.61 129.34 46.75 

d18512 2099.08 217.37 31.47 

fnl4461 992.95 163.94 23.30 

nrw1379 1005.57 171.75 44.59 

pr1002 1172.71 244.34 25.27 

5. Conclusion 

In this paper, new integer linear programming formulation with O(n2) binary variables and O(n2) constraints is 
presented for multiple traveling repairmen problem. We conduct a computational analysis in order to see the 
performance of the new formulation against the other models by using benchmark instances existing in the 
literature. We experimentally prove that proposed formulation is superior to other models in terms of CPU times. 
Besides that, we carried out more analysis to see the performance of proposed model with benchmark instances for 
k-TRP by increasing problem size. Consequently, we observe that proposed formulation can solve all the k-
repairmen benchmark instances optimally using CPLEX 12.6.0.0 as shown tables. In the literature, as far as we 
know there do not exist many formulations for this problem. For this reason, our adaptation is very important 
contribution to this area. It is also observed that if the value of k is increased, CPU time is decreased. These models 
can be adapted to the repairmen problem with time windows as next studies. 
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