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Abstract: Let (Ω,A, µ) be a finite positive measure space, E a Banach space, and 1 < p < ∞ . It is known that the

Bochner space Lp(µ,E) is reflexive if and only if E is reflexive. It is also known that L(L1(µ), E) = L∞(µ,E) if and

only if E has the Radon–Nikodým property. In this study, as an application of hyperstonean spaces, these results are

extended to arbitrary measures by replacing the given measure space by an equivalent perfect one.
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1. Introduction

Let (Ω,A, µ) be a positive measure space, E a Banach space, and p ≥ 1 a real number. We shall denote the

Bochner space Lp(Ω,A, µ, E) by Lp(µ,E) if there is no chance of ambiguity about the underlying measurable

space. For definitions and properties of these spaces we refer to [4] or [5] .

The space L∞(µ,E) is defined to be the space of all essentially bounded measurable functions from Ω to

E . (Recall that a measurable function from f : Ω −→ E is essentially bounded if ∃ a number α > 0 such that

the set {x ∈ Ω : ∥f(x)∥ > α} is locally null, i.e. its intersection with every set of finite measure has measure

zero.)

A Banach space E is said to have the Radon–Nikodým property (RNP) with respect to a positive

measure µ if every µ -continuous measure G from A to E that is of bounded variation can be represented by

an integrable E -valued function g ; that is,

G(A) =

∫
Ω

gχAdµ =

∫
A

gdµ ∀A ∈ A.

We say that a Banach space E has the RNP if it has this property with respect to every positive measure.

Many spaces, including reflexive ones (in particular, Hilbert spaces), and separable dual spaces, have the RNP.

Let us recall that a Banach space X is reflexive if the natural embedding x −→ x̂ from X into the

second dual X∗∗ is surjective, where for x ∈ X, x̂ : X∗ −→ C is defined by x̂(φ) = φ(x), φ ∈ X∗.

Examples show that there are nonreflexive Banach spaces, which are linearly isometric to their second

duals.

Let (S,A, υ ) be a finite positive measure space, E a Banach space, and p > 1 a real number.
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(a) It is known that the Bochner space Lp(ν,E) is reflexive if and only if E is reflexive [4, p .100];

(b) it is also known that E has the RNP with respect to υ if and only if every bounded linear mapping

T : L1(υ) −→ E is representable, i.e. there is a function g ∈ L∞(ν,E) such that

Tf =

∫
S

fgdµ, f ∈ L1(υ)

[4, p .63].

Without any serious difficulty, these results can be extended to σ -finite positive measures, but for

arbitrary positive measures, it poses some serious difficulties, which we shall overcome by replacing the given

measure space by an equivalent perfect one.

A Stonean space is a compact Hausdorff space in which the closure of every open set is open. These are

precisely the Stonean spaces of complete Boolean algebras [9] .

Definition 1 A positive Borel measure µ on a Stonean space Ω is said to be perfect if:

(i) every nonempty open set contains a clopen set with finite positive measure;

(ii) every nowhere dense Borel set has measure zero (equivalently, every closed set with empty interior has

measure zero).

Definition 2 A Stonean space Ω with a perfect measure µ on it is called hyperstonean, and the measure space

(Ω,A, µ) is called a hyperstonean measure space.

Definition 3 Two measures (or measure spaces) are said to be equivalent if for each 1 ≤ p < ∞ the corre-

sponding Lp spaces are linearly isometric.

In [2], Cengiz proved that every positive measure space is equivalent to a hyperstonean measure space,

which shows that the class of hyperstonean spaces is very large indeed, but not every Stonean space is

hyperstonean; for instance, the Dedekind completion (order completion) of C([0, 1],R) is an order complete

M -space, so order- and norm-isometric to C(W,R) for some compact Hausdorff space W. The space W is

known to be Stonean but not hyperstonean [4, p. 123]).

All perfect measures on the same Stonean space are equivalent to one another, and they are also absolutely

continuous with respect to each other.

2. Main results

We shall fix a hyperstonean measure space (Ω,A, µ) and generalize the results (a) and (b) mentioned earlier.

The measure µ has many nice properties, some of which will be mentioned in due course.

Now we are ready to prove the following theorem:

Theorem 4 Let (Ω,A, µ) be a perfect measure space, E be a Banach space, and 1 < p < ∞. Then Lp(µ,E)

is reflexive if and only if E is reflexive.
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An application of Zorn’s lemma provides us with a maximal family {Ωi : i ∈ I} of disjoint clopen sets

of strictly positive finite measure. Clearly,
∪

Ωi is open and dense in Ω, and since µ is perfect, Ω \
∪
Ωi has

measure zero. Therefore, for any Banach space E and 1 ≤ p <∞,

Lp(Ω,A, µ) =
∑
i

⊕ Lp(Ωi, µ, E) (p-direct sum).

For the proof of the theorem, we need the following lemma.

Lemma 5 Let (Ω,A, µ) and E be as in the theorem. If E has the Radon–Nikodým property with respect to

each µi, i ∈ I (the restriction of µ to the σ -algebra Ai = {A ∩ Ωi : A ∈ A}) , then it has the same property

with respect to µ.

Proof Let G : A −→ E be a µ -continuous vector measure of bounded variation. Then for each i ∈ I, there

exists a Bochner integrable function gi : Ω −→ E that vanishes outside Ωi and such that

G(A) =

∫
A

gidµ for all A ∈ A.

Since |G| (the variation of G) is a finite measure on Ω, |G| (Ωi) = 0 for all but countably many i in I. Thus,

we may assume that I = {1, 2, 3, . . .} .
Now let g =

∑
i

gi. Then g is measurable and

|G| (Ω) =
∫
Ω

∥g(.)∥ dµ = ∥g∥1 < ∞,

that is, g is Bochner integrable.

Let A ∈ A . Then, since ∥∥∥∥∥∥
∫
A

gdµ−
n∑

i=1

∫
Ai

gdµ

∥∥∥∥∥∥ ≤
∫
Ω

χBn ∥g(.)∥ dµ

where Ai = A ∩ Ωi and Bn =
∞∪

i=n+1

An, by the dominated convergence theorem,

∫
A

gdµ =

∞∑
i=1

∫
Ai

gdµ =

∞∑
i=1

G(Ai) = G(A),

proving our lemma. 2

Proof of the theorem First let us assume that Lp(µ,E) is reflexive. Fix i ∈ I and let χi denote the

characteristic function of Ωi. Then the mapping u −→ µ(Ωi)
−1uχi is a linear isometry of E onto a closed

subspace of Lp(µ,E). Since every closed subspace of a reflexive space is reflexive [8, p. 111], E is reflexive.

For the converse, we now assume that E is reflexive and identify it with its second dual E∗∗.
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For g ∈ Lq(µ,E∗) we define ϕg on Lp(µ,E) by

ϕg(f) =

∫
Ω

⟨f, g⟩ dµ, f ∈ Lp(µ,E),

where ⟨f, g⟩ (t) = g(t)(f(t)), t ∈ Ω. Notice that since E∗∗ = E, ⟨g, f⟩ is also defined and equals ⟨f, g⟩ .
We know that in the case in which µ is finite, the mapping g −→ ϕg maps Lq(µ,E∗) isometrically onto

Lp(µ,E)∗ if and only if E∗ has the Radon–Nikodým property with respect to µ. (This theorem is due to [1]

when µ is a Lebesgue measure on [0, 1]. A nice proof of this result can be found in [4, pp. 97− 100].) In [3],

Cengiz extended this theorem to arbitrary measures.

Being reflexive spaces, E and E∗ have the Radon–Nikodým property with respect to finite measures

[4, p. 76] and thus with respect to each µi, i ∈ I , and therefore, by Lemma 5, they have this property

with respect to µ. Consequently, by the above mentioned theorem, the map g −→ ϕg is a surjective linear

isometry, and also by the same theorem, the map h −→ ϕ∗h is a linear isometry from Lp(µ,E) onto Lq(µ,E∗)∗ ,

where for h ∈ Lp(µ,E), ϕ∗h is defined on Lq(µ,E∗) similarly. Thus, Lp(µ,E)∗ = {ϕg : g ∈ Lq(µ,E∗)} and

Lq(µ,E∗)∗ = {ϕ∗h : h ∈ Lp(µ,E)} .
Now let ψ ∈ Lp(µ,E)∗∗. Then the mapping g −→ ψ(ϕg), g ∈ Lq(µ,E∗), is a bounded functional on

Lq(µ,E∗). Therefore, there exists an h ∈ Lp(µ,E) such that ψ = ϕ∗h; that is, for each g ∈ Lq(µ,E∗) we have

ψ(ϕg) = ϕ∗h(g) =

∫
Ω

⟨g, h⟩ dµ =

∫
⟨g, h⟩ dµ

= ϕg(h) = ĥ(ϕg),

where ĥ denotes the image of h in Lp(µ,E)∗∗ under the natural embedding. This shows that ψ = ĥ, and since

ψ was arbitrary we conclude that Lp(µ,E) is reflexive. Hence, the proof is completed. 2

Remark 6 One may argue that

Lp(µ,E)∗∗ ≃ Lq(µ,E∗)∗ ≃ Lp(µ,E∗∗) ≃ Lp(µ,E),

that is, Lp(µ,E)∗∗ is isometric to Lp(µ,E) , but this does NOT imply that Lp(µ,E) is reflexive, for there are

nonreflexive spaces that are isometric to their second duals.

Finally we extend result (b) mentioned in the introductory part to arbitrary measures.

Theorem 7 Let (Ω,A, µ) be an arbitrary perfect measure space and E be a Banach space. Then E has the

Radon–Nikodým property with respect to µ if and only if every bounded linear operator T from L1(µ) to E

is representable, i.e. L(L1(µ), E) = L∞(µ,E) , where L(L1(µ), E) denotes the space of all bounded linear

operators from L1(µ) to E.

Proof Assume that each operator in L(L1(µ), E) is representable. Fix i ∈ I and let Ti : L
1(Ωi) −→ E be

a bounded linear operator, where L1(Ωi) denotes the subspace of the elements of L1(µ) vanishing outside Ωi.

We extend Ti to all of L1(µ) by

T (f) = Ti(fχi), f ∈ L1(µ),
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where χi denotes the characteristic function of Ωi. Then, by our assumption, there exists a g ∈ L∞(µ,E) such

that

T (f) =

∫
Ω

fgdµ for all f ∈ L1(µ).

For each measurable set A of finite measure contained in the complement of Ωi we have

0 = Ti(χAχi) = T (χA) =

∫
Ω

χAgdµ =

∫
A

gdµ.

Thus, it follows that g(x) = 0 a.e. outside Ωi, i.e. g ∈ L∞(Ωi, E), and Ti is represented by g.

The above discussion proves that E has the Radon–Nikodým property with respect to µi = µ |Ωi , and

hence, by Lemma 5, it has this property with respect to µ.

Conversely, assume that E has the Radon–Nikodým property with respect to µ and let T : L1(µ) −→ E

be a bounded linear operator. For each i ∈ I, let Ti denote the restriction of T to L1(Ωi). Then, by the finite

measure case, Ti is representable. Let, for i ∈ I, gi ∈ L∞(Ωi, E) such that

Ti(f) =

∫
Ωi

fgidµ for all f ∈ L1(Ωi).

Now let g =
∑
i

gi. Then g is locally measurable and since ∥Ti∥ = ∥gi∥∞ ≤ ∥T∥ for each i ∈ I, we have

∥g∥∞ ≤ ∥T∥ . It remains to show that, for f ∈ L1(µ),

T (f) =

∫
Ω

fgdµ.

Let f ∈ L1(µ). Since its support is σ -finite, in the rest of the proof we will assume that I = {1, 2, 3, . . .} .

Let An =
n∪

i=1

Ωi. Since, by the dominated convergence theorem, fχAn −→
n

f in L1(µ) and T is continuous,

T (fχAn) −→
n

T (f), and since

∥∥∥∥∥∥
∫
Ω

fgdµ− T (fχAn)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∫
Ω

fgdµ−
∫
Ω

χAnfgdµ

∥∥∥∥∥∥
≤ ∥g∥∞

∫
Ω

χA′
n
∥f(.)∥ dµ

where A
′

n denotes the complement of An, again by the dominated convergence theorem we obtain

T (f) =limT (fχAn) =
n

∫
Ω

fgdµ.

2
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CENGİZ and GÜNTÜRK/Turk J Math

Remark 8 This last result need not hold even in the scalar case if the measure space is not decomposable, for

there are measures ν such that L1(ν)∗ ̸= L∞(ν) (see [6, p. 349] or [7, p. 287]).

Remark 9 We would not have been able to obtain the extension results in the theorems if it had not been for

the equivalence of any arbitrary positive measure to a perfect one.
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