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ABSTRACT 

DISTURBANCE REJECTION AND ATTITUDE CONTROL OF QUADROTOR 

WITH LQG 

Pınar AKYOL 

Başkent University Graduate School of Natural and Applied Sciences Department 

of Electrical Electronic Engineering 

This thesis is about mathematical modelling, control design of a quadrotor and 

stating the differences between Gausissan white noise and Wind Shear turbulence. 

Quadrotor has four rotors and flies through the generated thrust and torques by 

these rotors. Altitude and attitude control of the quadrotor has always been a 

research subject. This thesis is focused on two main topics. Firstly, designing 

altitude and attitude controls of a quadrotor under Wind Shear turbulence and 

Gaussian white noise. Secondly, showing the different effects of the Gaussian white 

and Wind Shear on the quadrotor system. For mathematical model, Newton-Euler 

formalism is used. Linear control techniques such as, LQG and PID are used for 

altitude and attitude control. Kalman Filter is used for state estimation and noise 

filtering. Finally, the effects of wind turbulence and Gaussian white noise on the 

quadrotor system is examined and showed by simulations both separately and 

together. The results shows that, Wind Shear and Gaussian white noise had 

different effects on the quadrotor system and the proposed control approach 

successfully rejected these disturbances. 

 

 

 

KEYWORDS: Control design of a quadrotor, Wind shear turbulence, Linear control 

techniques, Newton-Euler formalism, LQR, LQG, Kalman Filter  

Supervisor: Assist. Prof. Derya YILMAZ, Başkent University, Department of 

Electrical and Electronic Engineering. 
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ÖZET 

LQG İLE QUADROTOR’UN DAVRANIŞ KONTROLÜ VE BOZULMA ETKİSİ 

REDDİ 

Pınar AKYOL 

Başkent Üniversitesi Fen Bilimleri Enstitüsü  

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Bu çalışma quadrotor’un matematiksel modellemesi, kontrol tasarımı ve beyaz 

Gauss gürültüsü ile rüzgar değişim türbülansının farklarını belirtmek üzerinedir. 

Quadrotor’ un dört adet pervanesi bulunur ve bu pervanelerin ürettiği itki ve tork ile 

uçar. Quadrotor’un davranış kontrolü her zaman araştırma konusu olmuştur. Bu tez 

iki ana noktaya odaklanmaktadır. Öncelikle quadrotor’ un Gauss gürültüsü ve rüzgar 

değişimi türbülansı bozucu etkileri altında davranış kontorlünü sağlayacak 

kontrolcüleri tasarlamak. İkici olarak da Gauss gürültüsü ile rüzgar değişimi 

türbülansı arasındaki ortaya koymaktır. Matematiksel model için Newton – Euler 

formalizmi kullanılmıştır. Doğrusal kontrol teknikleri olarak LQG ve PID kontrol 

kullanılmıştır. Durum tahmini ve gürültü engelleme için Kalman filtresi kullanılmıştır. 

Son olarak, rüzgar değişimi türbülansı ve beyaz Gauss gürültüsünün sisteme etkileri 

birlikte ve ayrı ayrı incelenmiş ve simulasyonla ortaya koyulmuştur. Elde edilen 

sonuçlar, rüzgar değişimi türbülansı ve beyaz Gauss gürültüsünün sistemde farklı 

etkilere yol açtığını ve bu çalışmada önerilen yaklaşımın bu bozucu etkileri başarılı 

bir şekilde giderdiğini göstermektedir. 

 

 

ANAHTAR SÖZCÜKLER: Quadrotor’un kontrol tasarımı, Rüzgar değişimi 

türbülansı, Doğrusal kontrol teknikleri, Newton-Euler formalizm, LQR, LQG, Kalman 

Filtresi  

Danışman: Yrd. Doç. Dr. Derya YILMAZ, Başkent Üniversitesi, Elektrik ve 

Elektronik Mühendisliği Bölümü. 
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1. INTRODUCTION 

1.1  Goals and Motivation 

This thesis work will focus on modelling, control design of a quadrotor under 

Gaussian white noise and wind shear and stating the different effects of these 

disturbances on the quadrotor. Quadrotor was chosen among the other UAVs by 

means of being highly nonlinear, having multiple input multiple output system and 

six degrees of freedom (DOF) along with four actuators. Because of having a less 

number of control inputs compared to the system’s degree of freedom, the quadrotor 

system is an under actuated system. Due to the nonlinear coupling between the 

actuators and degrees of freedom, quadrotors are very difficult to control.  

There are various theses, which use Gaussian white noise as turbulence. This 

thesis’ goals are firstly, defining and presenting the effect and difference of the Wind 

Shear turbulence, which has never been used beforehand and Gaussian white 

noise on the quadrotor system and secondly, applying linear control techniques 

successfully. Wind Shear is a non – Gaussian disturbance, this is the reason this 

turbulence model is chosen in this thesis.  

Flight control and stability under these disturbances are shown individually and 

combined. Roll, pitch, yaw and altitude are controlled by using PID and LQG control 

technique. Noise cancellation and state estimation is done by employing Kalman 

Filter as state observer. LQG was chosen over LQR due to its prediction ability. With 

this ability sensor modelling and calibration in the quadrotor model wasn’t required 

to acquire the results. 

The contributions of this thesis work are obtaining mathematical model of a 

quadrotor, deriving equations of motion, developing linear control algorithms, state 

estimation and exhibiting the difference between the effects of Wind Shear 

turbulence and Gaussian white noise on a derived quadrotor system. 
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1.2  A Brief Quadrotor History 

1.2.1 History of helicopter 

“The helicopter approaches closer than any other to fulfillment of mankind’s 

ancient dreams of the flying horse and the magic carpet.” 

Igor Skorsky1 

Flying was always a big issue for mankind and it was the biggest challenge for many 

years. Hazarfen Ahmet Çelebi tried flying with artificial wings in the 17th century, he 

flew over Bosporus and landed successfully. Figure 1.1 shows an illustration of 

Hazarfen Ahmet Çelebi, who was flying over the Galata Tower. 

 

Figure 1.1     An illustration of Hazerfen Ahmet Çelebi flying over Bosporus [1] 

Helicopter’s history is shorter than fixed wing aircraft’s history. In 1490, Leonardo 

Da Vinci, an Italian scientist, created the Helical Air Screw and it has been frequently 

referred as the first genuine attempt to show a working helicopter (see Figure 1.2). 

                                                           
1 Igor Skorsky was a Russian - American aviation pioneer in both helicopters and fixed-wing aircraft. 
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Figure 1.2     Helical Air Screw [2] 

The very first person who used ‘Helicopter’ word was Ponton d’Amécourt, a French 

pioneer of aviation in the 19th century and he also described a coaxial helicopter and 

ways to steer. After that in 1877, an Italian physician Forlanini experimented a 

reduced scale, steam powered model which was able to fly 20 seconds long at 12 

meters height. After these improvements, the first electrical model was built in 1887.  

In 1907, very first manned flight was demonstrated by French scientists Louis and 

Jacques Breguet and the professor Richet with their Gyroplane no: 1 (see Figure 

1.3). This vehicle was basically a huge quadrotor with double layer of propellers and 

a lack of control area. It weighted over 300 kg and it went up to 4,5 meters, flew 

about 22 meters away but it wasn’t stable during the recorded flight [3]. 

 

Figure 1.3     Gyroplane no:1 

In 1920, a French engineer and helicopter designer Etienne Oehmichen designed 

several models and attempted to fly with them. L’hélicoptère no: 2 was the one of 
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his six designs and it had 8 propellers. L’hélicoptère no: 2’ s stability was significantly 

high. In Figure 1.4  L’hélicoptère no: 2 had took-off. 

 

Figure 1.4     L’hélicoptère no: 2 [4] 

Another experiment was made in 1923 by a Russian engineer George de Bothezat 

with the vehicle named Octopus. It flew off the ground but it hadn’t acquired a 

successful flight. Nevertheless, it became an inspiration to nowadays quadrotor 

design. A photo of the Octopus was flying is shown in Figure1.5 [5]. 

 

Figure 1.5     Octopus 

In both Oehmichen’s and Bothezat’s designs, the motors were driven by propellers 

perpendicular to the main rotors, that is why their designs weren’t considered as 
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successful quadrotor designs. 30 years later, in 1957, a new quadrotor designed 

and called Convertawings Model a Quadrotor by Marc Adman Kaplan (see Figure 

1.6). The aircraft was designed to rotate four rotors with two motors and v-belts. 

Although the vehicle achieved great success as the first quadrotor capable of flying 

forward, had not been produced further due to low demand. 

 

Figure 1.6     Convertawings Model a Quadrotor [6] 

In 1958, the Curtiss-Wright company designed a quadrotor for American army, 

called Curtiss-Wright VZ-7 (see Figure 1.7), which was capable of vertical take-off 

and landing [7]. 
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Figure 1.7     Curtiss-Wright VZ-7 

These are the prototypes and designs that led the aviation to improve with new 

designs and experiments. 

1.2.2 History of unmanned aerial vehicles 

During and just after World War I the first pilotless aircraft was built. On 12 

September 1917, the Hewitt-Sperry Automatic Airplane, known as the flying bomb 

was made its first flight. This flight had demonstrated the concept of an unmanned 

aircraft. Gyroscopes were invented by an American inventor Elmer Sperry from the 

Sperry Gyroscope Company and they were used for controlling and stabilizing. After 

the WW I, radio controlled drones started to be designed [8].  

In World War II, Reginald Denny has built a first large-scale drone. He believed that 

low-cost RC (radio control) would be very useful for training anti-aircraft gunners, in 

1935 he demonstrated a prototype target drone, the RP-1 to the US Army. In 1940, 

Denny and his partners continued to develop their design and signed a contract for 

their radio-controlled RP-4, which eventually became the Radioplane OQ-2 (see 

Figure 1.8) [9]. 
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Figure 1.8     A Radioplane OQ-2 and its launcher [10] 

1.3 Modern Era 

The idea of Vertical Take-off and Landing (VTOL) has led the aviation industry to 

design various models. Since the beginning of the 2000s using high speed brushed 

direct current motors (BDCMs), integrated inertial measurement units (IMUs) and 

high-current li-on batteries has led the technology to improve and the resulted in 

mini and micro UAVs. In civilian respects, exploring mountainous terrain, forested 

areas, meteorological surveys, agricultural disinfection, data communication and in 

military respects, applications such as discovery and surveillance has come forward. 

Recent quadrotor designs in the 21th century: 

Bell Boeing Quad Tiltrotor (QTR) has four-rotor derivative of the Bell Boeing V-22 

Osprey tiltrotor and it is developed by Boeing and Bell Helicopter (see Figure 1.9) 

[11]. 
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Figure 1.9     Bell Boeing Quad Tiltrotor (QTR) 

Anteos drone from Aermatica Spa is the first officially permitted rotary-wing radio-

controlled drone which can fly in civil airspace (see Figure 1.10) [12]. 

 

Figure 1.10   Anteos A2-Mini 

AeroQuad and ArduCopter are Arduino based open source software quadrotor 

projects (see Figure 1.11.a and b respectively). 
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Figure 1.11   AeroQuad [13]  Figure 1.12   ArduCopter [14] 

Parrot AR.Drone 2.0 designed by the French manufacturer Parrot SA. It has been 

designed for entertainment purposes (video gaming, augmented reality etc.) and it 

can be controlled via Smartphones through Wi-Fi (see Figure 1.12) [15] . 

 

Figure 1.13   Parrot AR.Drone 2.0 

Quadrotors have many advantages over conventional helicopters in terms of control 

and ease of installation. However, requirements of size and energy are the main 

disadvantages of the quadrotor. In terms of advantages of the quadrotors, they are 

simple in mechanics, their gyroscopic effect is low and they have high payload. In 

terms of disadvantages, they consume large amount of energy and their size and 

mass is large. 

1.4  General Classification of Aircrafts 

Generally, aircrafts can be classified under two categories: Lighter than air (LTA) 

and Heavier than air (HTA). In Figure 1.13 there is a general representation of 

aircrafts’ classification. In this classification including principle of flying and 
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propulsion mode. This aircraft classification states clearly, which category the 

quadrotors fall into. 

Aircraft

Ornihopter

Lighter than air

Power driven

Airship

Non-Power 

driven

Free Balloon
Captive 

Balloon

Heavier than air

Power driven

Aeroplane

Non-Power 

driven

Glider Kite Rotorcraft

 

Figure 1.14   General aircraft classification [16] 

1.5 Literature Review 

There has been several researches and papers about UAVs and particularly about 

quadrotors. They are becoming very popular and their usage is highly extensive. 

From surveillance to gaming and in the near future they will become essential in 

some respects.   

Bouabdallah [17] have designed a VTOL miniature flying robot (MFR) named OS4. 

They mathematically modelled and used both linear and nonlinear control 

techniques. To control OS4’s attitude they used Lyapunov theory. PID and LQ 

techniques were the second and the third controllers. Using these controllers they 

compared attitude control outcomes. Backstepping and sliding-mode controllers 

were used as the fourth and the fifth controller approaches, which are applied to 

control attitude. They finally augmented backstepping with integral and proposed 

this technique as a single tool to control design for attitude, altitude and position of 

OS4. 

C. Balas [18] obtained nonlinear mathematical model and decoupled inputs of 

Dragonflyer X-Pro. He used PID and LQR to control the modelled quadrotor. His 

model comprises the controlling of the position and yaw angle of the quadrotor. In 

his work he used engineering and mathematical approaches in order to create a 

perfect model. Finally, he measured his model’s ability to track a given input 

trajectory. His way of modelling finally corresponds to stepping back from 
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mathematical approach and he achived optimal performances from his model which 

obtained with engineering approach. 

Costa de Oliveira [19] mathematically modelled, experimentaly identified and 

controlled a small indoors quadrotor around hovering condition. Kalman Filter was 

used for state estimation and noise filtering. Other control techniques such as, PID, 

LQ, 𝐻∞ and µ-synthesis with DK-iteration were used. These techniques were 

compared with each other within reference tracking of flight trajectory and 

uncertainty of the model. He experimented that with 𝐻∞ and µ-synthesis performs 

better results under uncertainity situations due to the robustness property. 

Kim et al. [20] made a performance comparison of a quadrotor between LQR, LQR 

with gain scheduling, feedback linearization and sliding mode control techniques. 

Their experiment showed that LQR with gain scheduling has produced good 

performance with less effort of total control while sliding-mode control has returned 

fastest state regulation with the best performance. 

Kıyak and Ermeydan [21] made fault tolerant control using improved PID controller 

with different motor fault cases in a quadrotor. He made a simulation by obtaining 

aircraft’s dynamic equations and modelling motor dynamics. In his simulation both 

linear and nonlinear models were compared within the scope of following 

trajectories. Control structure design was tested with different motor fault cases to 

state the robust control structure was successfully built. 

Zulu and John [22] made a comparison between several control techniques (eg. 

PID,LQR, LQG, Sliding mode, feedback linearization, 𝐻∞ and fuzzy logic) applied to 

control the quadrotor. The conclusion of their work is a proposal of hybrid systems 

that can be considered as combination of more than one control technique’s 

advantages. Their work states the comparison of the quadrotor control techniques 

by the characteristics of these techniques and shows a table according to these 

features. 

Karaahmetoğlu [23] made a trajectory control of a quadrotor using cascade control 

with state observer LGQ. He used PD, PID, LQR and LQG control and acquired 

better results with LQG control under various trajectory cases.  
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Fessi and Bouallégue, modelled a nonlinear dynamical quadrotor using Newton – 

Euler formalism. They designed LGQ control for attitude and altitude stabilization 

and acquired the weighting matrices by trial-errors. They showed their system’s 

effectiveness of their proposed flight stabilization by simulations [24]. 

After all these researches using Wind Shear as a turbulence in the quadrotor system 

was chosen. There is a lack of study about this type of turbulence effect on the 

quadrotors. As it was mentioned before, one of this thesis’ goals is to make a 

statement about the difference in terms of the effects of Gaussian white noise and 

Wind Shear turbulence on the quadrotor system. 

1.6 Thesis Structure 

The rest of this thesis is organized as follows. 

In Chapter 2 system model was designed using Newton – Euler formalism. Some 

assumptions and generalities were made. Body and inertia frames, rotation matrix 

for transformation between the frames and finally equations of motions were derived 

and stated. For LQG control, a linearized model also stated. Through this chapter 

characteristics of the quadrotor can be seen clearly. 

Chapter 3 shortly shows applied control techniques for attitude and altitude control 

of the quadrotor, which are PID and LQG. The controllers are verified using Simulink 

simulations and the results of these simulations can be found in Chapter 5. 

Chapter 4 introduces new approach to disturbance usage on the quadrotor. A Wind 

Shear turbulence model was used and its effects are shown through body and 

inertial frames. Also Gaussian white noise applied to the system along with Wind 

Shear turbulence. System linearization explained and derived. Effects of the 

combination disturbances are showed in Chapter 5. Kalman Filter was used as state 

observer.  

Chapter 5 discusses Gaussian white noise and turbulence effects on the quadrotor, 

PID and LQG techniques performances with simulation results. 

Finally, Chapter 6 concludes by highlighting the objective and results of this work 

and proposes some improvements for the future work. 
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2. SYSTEM MODELLING 

2.1 Quadrotor Concept and Generalities 

 A quadrotor consists of four rotors, each one placed at the end of a cross-like 

structure as shown in Figure 2.1. Each rotor consists of a two-blade propeller to an 

individually powered BLDCMs (Brushless DC Motors). The BLDCMs are different 

from the common BDCMs (Brushed DC Motors). In BDCM input voltage that applied 

to the armatures is done by a mechanical commutator (brush), due to this feature it 

suffers wear through its operation. As a result, BDCMs have shorter nominal life 

than BLDCMs [19]. 

 

Figure 2.1     Coordinate system of a Quadrotor [17] 

Figure 2.1 also shows which direction of the rotors rotate. Rotor 1 and 3 rotates 

clockwise and rotor 2 and 4 rotates counter clockwise. Horizontal movement of the 

quadrotor is achieved by the generated torques from the rotors and vertical 

movement is achieved by the total thrust. Figure 2.2 shows an illustration of the 

quadrotor’s concept motion description, the arrow width is proportional to the 

propeller rotational speed. 
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Figure 2.2     Quadrotor’s motion [25] 

a) Yawing movement counter clockwise direction 

b) Yawing movement clockwise direction 

c) Hovering or take-off 

d) Rolling movement clockwise direction 

e) Pitching movement counter clockwise direction 

f) Pitching movement clockwise direction 

g) Descent or landing 

h) Rolling movement counter clockwise direction 

In order to design an efficient model of the quadrotor some assumptions were made:  

 The structure is supposed to be rigid. 

 The structure is supposed to be symmetrical. 

 Origin of the both center of the gravity and the body fixed frame are assumed 

to coincide. 

 The propellers are supposed to be rigid. 

 Thrust and drag are proportional to the square of the propeller’s speed. 
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Quadrotor is a six DOF (degrees of freedom) flying vehicle, thus six variables 

(𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓) are using to express its position in space. 𝑥, 𝑦 and 𝑧 represent the 

distance of the quadrotor’s center of mass along with the Earth fixed inertial frame. 

𝜙, 𝜃 and 𝜓 are Euler angles and they represent the rotation of the quadrotor along 

x (between – 𝜋 and 𝜋), y (between 
–𝜋

2
 and 

𝜋

2
),  and z (between – 𝜋 and 𝜋) axes 

respectively. Further explanation and definitions about frames and Euler angles will 

be discussed in Body and Inertial Frames and in Rotational Matrix subsections.  

2.2 Body and Inertia Frames 

Firstly, the coordinate systems must be defined in order to be able to derive the 

model of the quadrotor. Figure 2.1 shows the Earth (inertial) frame with X, Y and Z 

conformity with the N, E, D (North, East, Down) and the body frame with 𝑥, 𝑦 and 𝑧 

axes. The Earth (inertial) frame fixed on a specific place at ground level. Body frame 

is at the center of the quadrotor’s body with x-axis is pointing towards to the first 

propeller and y-axis is pointing towards to the second propeller. z – axis is pointing 

towards to the ground. 

𝜁 = [
𝑥
𝑦
𝑧
]      (2.1) 

states the 3D position vector of the body frame with respect to the inertial frame. 

𝑣 = [
�̇�
�̇�
�̇�
]      (2.2) 

states the velocity vector of the body frame with respect to the inertial frame. 

𝐴𝑏 = [
�̈�
�̈�
�̈�
]

̇

      (2.3) 

states the acceleration vector of the quadrotor. 

𝜔𝑏 = [
𝑝
𝑞
𝑟
]      (2.4) 

states the body angular velocity vector. 
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2.3 Rotation Matrix 

The rotation matrix R describes the orientation of the quadrotor from the body frame 

to the inertial frame. Quadrotor’s orientation is described using Euler Angles roll (phi, 

ϕ), pitch (theta, θ) and yaw (psi, ψ) representing rotations along with the X, Y and Z 

axes respectively. In this thesis, the order of rotation is in the sequence of yaw (ψ), 

pitch (θ) and roll (ϕ). Definitions of each Euler angles rotation matrices are given 

below: 

𝑅1(𝜙) = [
1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

]    (2.5) 

𝑅2(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

]    (2.6) 

𝑅3(𝜓) = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

]    (2.7) 

These three matrices are orthogonal matrices and the rotation matrix R is the matrix 

multiplication in the given sequence. 

𝑅𝑍𝑌𝑋 = 𝑅1(𝜙)𝑅2(𝜃)𝑅3(𝜓)     (2.8) 

𝑅𝑍𝑌𝑋 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
]   (2.9) 

𝑅𝑍𝑌𝑋is also an orthogonal matrix due to this property 𝑅𝑍𝑌𝑋
𝑇 = 𝑅𝑍𝑌𝑋. 

2.4 Euler Angle Transformation 

In flight control system, it is not possible to directly measure the Euler angles. 

However, the body angular velocities can be measured. The relationship between 

the body angular velocity vector [𝑝 𝑞 𝑟]𝑇 and the rate of change of the Euler 

angles, [�̇� �̇� �̇�]𝑇 can be determined by solving the Euler rates into the body 

coordinate frame [26]. 
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[
𝑝
𝑞
𝑟
] = [

�̇�
0
0

] + [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
0
�̇�
0
] + [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] [

0
0
�̇�

] (2.9) 

[
𝑝
𝑞
𝑟
] = [

1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

] [

�̇�

�̇�
�̇�

] and [

�̇�

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙

0
𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜃⁄ 𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃⁄

] [
𝑝
𝑞
𝑟
](2.10) 

𝐽−1 = [
1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

]    (2.11) 

𝐽−1 states the angular rotation matrix between body angular vector and the rate of 

Euler angles change vector. 

Around the hover position, considering small angles where 𝑐𝑜𝑠𝜙 = 1, 𝑐𝑜𝑠𝜃 = 1and 

𝑠𝑖𝑛𝜙 = 𝑠𝑖𝑛𝜃 = 0 then 𝐽−1can be simplified to an identity matrix 𝐼[3𝑥3]. 

2.5 Modelling with Newton-Euler Formalism 

There are two different methods for deriving equations of motions, which are 

Lagrangian equation and Newton – Euler formalism. In this thesis, Newton – Euler 

formalism is used.  

The dynamics of a rigid body under external forces applied to the center of mass 

and expressed in the body frame are in Newton-Euler formalism [17]: 

[
𝑚𝐼[3𝑥3] 0

0 𝐼
] [

𝑉�̇�

𝜔�̇�
] + [

𝜔 × 𝑚𝑉𝑏

𝜔 × 𝐼𝜔𝑏
] = [

𝐹𝑏

τ𝑏
]    (2.12) 

Thus, 

𝐹𝑏 = 𝑚𝐼[3×3]𝑉�̇� + 𝑚𝜔 × 𝑉𝑏      (2.13) 

𝜏𝑏 = 𝐼�̇� + 𝜔 × 𝐼𝜔𝑏       (2.14) 

Where, 𝐼 is the body’s inertia tensor  
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𝐼 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] and since an assumption made about the structure being 

symmetrical, thus 𝐼 become diagonal: 

𝐼 = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

]      (2.15) 

𝐼𝑥 = 𝐼𝑦 = 2(𝑚𝑟𝑙
2) +

2

5
𝑚𝑠𝑟

2     (2.16) 

𝐼𝑧 = ∑ (𝑚𝑟𝑙
2) +

2

5
𝑚𝑠𝑟

24
𝑗=1      (2.17) 

2.5.1 Aerodynamic moments and forces 

The quadrotor is controlled by varying four rotor’s speed independently. Figure 2.1 

shows how thrust and torques by each rotor produced. Four control inputs were 

used for modelling the quadrotor: 

1) The total thrust: 𝑈1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 = 𝑏(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4)       (2.18) 

2) Rolling moment: 𝑈2 = 𝑙(𝐹2 − 𝐹4) = 𝑏𝑙(𝜔2
2 − 𝜔4

2)        (2.19) 

3) Pitching moment: 𝑈3 = 𝑙(𝐹1 − 𝐹3) = 𝑏𝑙(𝜔1
2 − 𝜔3

2)        (2.20) 

4) Yawing moment: 𝑈4 =
𝑑

𝑏
(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4) = 𝑑(𝜔1

2 − 𝜔2
2 + 𝜔3

2 − 𝜔4
2)   (2.21)  

Where, 

𝐹𝑖 =
1

2
𝜌𝐴𝐶𝑇𝑟2𝜔𝑖

2 = 𝑏𝜔𝑖
2     (2.20) 

states the thrust force produced by the 𝑖𝑡ℎ rotor 

𝑀𝑖 =
1

2
𝜌𝐴𝐶𝐷𝑟2𝜔𝑖

2 = 𝑑𝜔𝑖
2     (2.21) 

states the torque moment produced by the 𝑖𝑡ℎ rotor 

𝜌 air density (kg/m3) 

A area of the propeller disc (m2) 

CT non-dimensional thrust coefficient 
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CD non-dimensional drag torque coefficient 

r radius of the propeller (m) 

𝜔𝑖 angular velocity of the 𝑖𝑡ℎ rotor (rad/sec) 

b thrust constant 

d torque constant 

𝑙 lever length of each of the arms 

𝑚𝑟 mass of propeller 

𝑚𝑠 mass of sphere 

2.5.2 Gyroscopic effect 

The gyroscopic moment of a rotor is a physical effect in which gyroscopic torques 

or moments attempt to align the spin axis of the rotor along with the inertial z-axis 

[27]. The gyroscopic effect from the rotation of the propellers: 

𝜏𝑥
′ = 𝐽𝑟𝜔𝑦(𝜔1 − 𝜔2 + 𝜔3 − 𝜔4)    (2.22) 

𝜏𝑦
′ = 𝐽𝑟𝜔𝑥(−𝜔1 + 𝜔2 − 𝜔3 + 𝜔4)    (2.23) 

2.5.3 Gravitational force 

Earth’s gravitational field causes an interaction with the weight of the quadrotor. 

Gravitational force acting on the inertial frame: 

𝐹𝑔 = [
0
0

𝑚𝑔
]       (2.24) 

2.6 Equations of Motion 

Total force equation acting on the quadrotor’s body frame: 

𝑚 [
�̈�
�̈�
�̈�
] = 𝑈1 [

𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓

𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
] − [

0
0

𝑚𝑔
] (2.24) 
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Total moment equation acting on the quadrotor’s body frame: 

[

𝐼𝑥�̈�

𝐼𝑦�̈�

𝐼𝑧�̈�

] = [

(𝐼𝑦 − 𝐼𝑧)�̇��̇�

(𝐼𝑧 − 𝐼𝑥)�̇��̇�

(𝐼𝑥 − 𝐼𝑦)�̇��̇�

] + 𝑈4 [
𝐽𝑟�̇�

−𝐽𝑟�̇�
0

] + [
𝑈2

𝑈3

𝑈4

]  (2.25) 

List of force and moment equations: 

�̈� =
𝑈1

𝑚
(𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓)     

�̈� =
𝑈1

𝑚
(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓)     

�̈� =
𝑈1

𝑚
(𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃) − 𝑔       

�̈� =
(𝐼𝑦−𝐼𝑧)

𝐼𝑥
�̇��̇� +

𝐽𝑟

𝐼𝑥
�̇�𝑈4 +

1

𝐼𝑥
𝑈2      (2.26) 

�̈� =
(𝐼𝑧−𝐼𝑥)

𝐼𝑦
�̇��̇� −

𝐽𝑟

𝐼𝑦
�̇�𝑈4 +

1

𝐼𝑦
𝑈3      

�̈� =
(𝐼𝑥−𝐼𝑦)

𝐼𝑧
�̇��̇� +

1

𝐼𝑧
𝑈4       

2.7 Simulink Model for Quadrotor 

From Figures 2.3 to 2.6 Simulink model of the quadrotor can be seen step by step. 

In Figure 2.3 the top view of the quadrotor is shown. For the simplicity, all desired 

signals generated by a Signal Builder. PID control for the attitude and altitude of the 

quadrotor is done in the PID Control block. Wind Turbulence consists of Wind Shear 

turbulence model, which can be found in Simulink under Aerospace Blockset. 
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Figure 2.3     Quadrotor’s top view of the Simulink model 

Figure 2.4 shows all the PID control blocks for attitude and altitude control. Desired 

signals and the calculated states form the Quadrotor System is subtracted, so an 

error signal for every control is calculated. All these signals united in a bus by using 

a Bus Creator and for the subtraction they all separated by using a Bus Selector. In 

Chapter 3, further details about the PID structure for the attitude and altitude control 

of the quadrotor can be found.  
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Figure 2.4     PID control blocks for the attitude and the altitude control of the 

quadrotor 

Figure 2.5 shows quadrotor model designed with respect to the Newton – Euler 

formalism. Torques and Thrust block generates control signals, which are 𝑈1, 𝑈2, 𝑈3 

and 𝑈4. These control signals directly goes to the main calculation block, which 

named 6DOF. The 6DOF block calculates all the states with respect to the given 

inputs, in this case step signals.  
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Figure 2.5     Designed quadrotor model with 6DOF block 

In Figure 2.6 inside of the 6DOF block is shown. All calculations; Euler angles, body 

angular velocity, inertial position, derivative of the body angular velocities, body 

velocities, inertial velocities and rotation matrix (in the figure stated as DCM matrix) 

are done. 

 

Figure 2.6     Inside of the 6DOF block 
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2.8 Linearized Quadrotor 

In order to use linear control techniques on a nonlinear system to control attitude 

and altitude, the system must be linearized at a feasible point. Further details and 

linearization point explanations will be discussed in Chapter 3. For the sake of 

clarity, a block diagram of the linearized system process can be seen in Figure 2.7.  

 

Figure 2.7     Linearized system process 

In this figure, U states control signals, which are 𝑈1, 𝑈2, 𝑈3 and 𝑈4. Quadrotor block 

calculates the states (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓, 𝑥,̇ 𝑦,̇ 𝑧,̇ 𝜙,̇ �̇� and �̇�) and the outputs ( 𝜙, 𝜃, 𝜓 and 

𝑧). All these inputs goes to the linearization block and they get linearized at the 

equilibrium flight point. After the linearization process is completed, linear control 

techniques applied to the linearized system. Further details about the linearization 

process and the applied linear control can be found in Chapter 3. 
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3. SYSTEM AND CONTROL DESIGN 

After identification of the quadrotor is done, the control design of the quadrotor can 

be proceeded. Due to the instability and nonlinearity of the quadrotor, designing an 

efficient and a reliable control is needed. For controlling the quadrotor, PID 

(Proportional Integral Derivative) and LQR (Linear Quadratic Regulator) / LQG 

(Linear Quadratic Gaussian) techniques is used. 

3.1 PID Control 

PID (proportional integral derivative) is a closed loop control and it tries to achieve 

the measured result closer to the desired result by adjusting the input. This control 

chosen over PD (Proportional Derivative) because of the steady state error. PID can 

eliminate the steady state error owing to its integral feature. PID control used for 

achieving stability of the quadrotor and has control parameters namely, 𝑘𝑝 for 

proportional gain, 𝑘𝑖 for integral gain and finally 𝑘𝑑for derivative gain. By changing 

these gains system can become more stable, transient response and steady state 

accurate. General representation of a PID control showed in Figure 3.1. 

 

Figure 3.1     General representation of PID controller 

The effects of gains 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 on a closed loop system are in the table 3.1. 
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Table 3.1   Effects of PID gains 

Response Rise Time Overshoot Settling Time Steady State Error 

𝑘𝑝 Decreases Increases Small change Decreases 

𝑘𝑖 Decreases Increases Increases Eliminate 

𝑘𝑑 Small change Decreases Decreases No change 

The derived PID control law is: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑣)𝑑𝑣
𝑡

0
+ 𝑘𝑑

𝑑𝑒(𝑡)

𝑑𝑡
   (3.1) 

Where, 

𝑢(𝑡) states the controlled variable, 𝑒 is the error signal, which is the difference 

between desired value and measured value. 

There are two main disadvantages in the general PID controller [21]: 

1) Since the derivative effect is calculated using error signal of the system, the 

output of the derivative will be an impulse function when a step input is 

applied to the system. This can cause the system moved away from the linear 

zone by saturating the actuators. 

2) Combination of actuators’ saturation and effect of the integral can cause a 

nonlinear effect. This will lead a decrease in controller’s performance. 

Another issue is integral winding, which occurs when the integral value is 

large and the sign of the error signal changes it takes time to change the sign 

of the integral. To prevent this situation, the integral effect should be limited 

to minimum and maximum values. 

In figure 3.2 a new approach used in PID controller to prevent these undesired 

situations [28]. 
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Figure 3.2     New approach of PID controller 

In this thesis four PID controller designed to control roll, pitch, yaw and altitude (z). 

Also in Figure 3.2 roll PID control scheme can be seen. The other PID controls of 

pitch, yaw and altitude have the same structure. Figures 3.3, 3,4 and 3-5 shows 

respectively. 

 

Figure 3.3     Pitch PID control 
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Figure 3.4     Yaw PID control 

 

Figure 3.5     Altitude PID control 

PID gains are found empirically. The table 3.2 below shows these gains. 
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Table 3.2   PID control gains 

 Proportional Gain Integral Gain Derivative Gain 

Roll Control 0.8 0.0002124 0.1126 

Pitch Control 1.2 0.0013 0.213 

Yaw Control 1 0.00001024 0.17803 

Altitude Control 100 0.286 12 

Figure 5.1 in Chapter 5, shows response of the quadrotor system to the applied step 

signal as desired roll, pitch, yaw and z. Also, this figure shows that wind shear effect 

is eliminated by PID control. Index 1 for this graph indicates desired values and 

index 2 for this graph indicates quadrotor’s response. 

Figure 5.2 in Chapter 5, shows wind shear turbulence block’s output when 6 meters 

of height and Direct Cosine Matrix (DCM), which is equation 2.8 from Chapter 2 

applied. Details about wind shear will be given in Chapter 4. 

In Figure 5.3 from Chapter 5, Wind Shear effect on the inertial frame can be seen.  

It is clear that quadrotor model with PID control can eliminate the wind shear 

turbulence effect from the quadrotor system. 

3.2 Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) 

LQR is a linear control technique for multiple input multiple input (MIMO) systems 

and it provides a practical feedback gain. To use LQR we need to characterize the 

model with transfer matrices instead of transfer functions. Further information about 

this technique can be found in Lewis and Stevens [28, 29]. 

Continuous state space description of the plant: 
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�̇⃗�(𝑡) = 𝐴�⃗�(𝑡) + 𝐵�⃗⃗�(𝑡)     (3.2) 

𝑦(𝑡) = 𝐶�⃗�(𝑡) + 𝐷�⃗⃗�(𝑡)     (3.3) 

Where, 𝐴  is the system matrix, 𝐵 is the input matrix, 𝐶 is the output matrix and 𝐷 is 

the feedback through matrix. Also �⃗� is the state vector, �⃗� is the output vector and �⃗⃗� 

is the input vector. 

𝐽 is the quadratic cost function which will be minimized by 𝑄, cost of the state (a 

positive semi-definite matrix; 𝑄 = 𝑄𝑇) and 𝑅 cost of the actuators (a positive definite 

matrix; 𝑅 = 𝑅𝑇): 

𝐽 =
1

2
∫ (�⃗�𝑇𝑄�⃗� + �⃗⃗�𝑅�⃗⃗�)𝑑𝑡

∞

0
     (3.4) 

The gain matrix 𝐾 is: 

𝐾 = 𝑅−1𝐵𝑇𝑆       (3.5) 

Where S is the Algebraic Ricatti Solution: 

0 = 𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄    (3.6) 

𝑄 and 𝑅 matrices are very important and the meanings of their values to the system 

are [29]: 

 If 𝑄 = 𝑅, regulation speed and the energy spend for control is equally 

important 

 If 𝑄 > 𝑅, regulation speed is more important than the energy spend for 

control. This means big valuable control signals were chosen to acquire fast 

regulation. 

 If 𝑄 < 𝑅, the energy spend for control is more important than regulation 

speed. This means using less control to spend less energy for control were 

chosen. On the other hand, regulation will be done slowly and it will take time. 

The quadrotor model described in Chapter 2 is a nonlinear model, therefore the 

model needs to be linearized to apply LQ regulator. Linearization point is chosen at 
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the equilibrium flight point, which means moments are zero (rolling, pitching and 

yawing) and total thrust is equal to the gravitational force.  

From Chapter 2 equation 2.18 total thrust 𝑈1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 = 𝑏(𝜔1 + 𝜔2 +

𝜔3 + 𝜔4) and it equals to 𝐹𝑔 = 𝑚𝑔 therefore all rotor’s angular speeds are equal. 

Recall moment equations from Chapter 2 (equations from 2.19 to 2.21), they all 

contains difference of the squared rotor speed. That is why all of the moments are 

equal to zero. 

Another important point for linearization is that since there will be any moment then 

Euler angles are equal to zero. For the Wind Shear effect only 𝑧 position in the 

inertial frame is chosen 6 meters, 𝑥 and 𝑦 positions are equal to zero as well.  

First, we need to define our system’s state, input and output vectors. These vectors 

can be found below respectively. 

�⃗� = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 �̇� �̇� �̇� �̇� �̇��̇�]𝑇    (3.7) 

�⃗� = [𝜙 𝜃 𝜓 𝑧]𝑇      (3.8) 

�⃗⃗� = [𝑈1 𝑈2 𝑈3 𝑈4]𝑇      (3.9) 

For the sake of notation simplicity, we shall drop     ⃗⃗⃗⃗  from now on.  

As mentioned before we will linearize this nonlinear system around the equilibrium 

flight point, so the linearization points in 𝑥 the state vector and 𝑢 the input vector are 

given below: 

𝑥 = [0 0 6 0 0 0 0 0 0 0 0 0]𝑇 and 𝑢 = [𝑚𝑔 0 0 0]𝑇 (3.10) 

Using these linearization points and equations 2.6 from Chapter 2 our 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷 

matrices will become: 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
(𝐼𝑦 − 𝐼𝑧)

𝐼𝑥
�̇�

(𝐼𝑦 − 𝐼𝑧)

𝐼𝑥
�̇�

0
(𝐼𝑧 − 𝐼𝑥)

𝐼𝑦
�̇�

0
(𝐼𝑥 − 𝐼𝑦)

𝐼𝑧
�̇�

0
(𝐼𝑧 − 𝐼𝑥)

𝐼𝑦
�̇�

(𝐼𝑥 − 𝐼𝑦)

𝐼𝑧
�̇� 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12𝑥12

 

𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓)

𝑚
(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓)

𝑚

0
0

(1 − (𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃))

𝑚
0

0
1

𝐼𝑥
0
0

0
0

0
0

0
0

0
0

0
0

1

𝐼𝑦
0

0
1

𝐼𝑧
]
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𝐶 = [

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 1
0 0 1 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0

]

4𝑥12

 

𝐷 =

[
 
 
 
 
 
 
 
 
 
 
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0]
 
 
 
 
 
 
 
 
 
 

12𝑥4
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The constants, which are used to calculate the matrices as follows: 

Table 3.3   Quadrotor constants 

Constants Value Unit 

𝐼𝑥 7.5𝑥10−3 𝑘𝑔 𝑚2 

𝐼𝑦 7.5𝑥10−3 𝑘𝑔 𝑚2 

𝐼𝑧 1.3𝑥10−2 𝑘𝑔 𝑚2 

Results of the state matrices after using these constants: 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0]
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𝐵 =

[
 
 
 
 
 
 
 
 
 
 

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1.5385
0

0
0

0
0

0
133.3333

0
0

0
0

0
0

0
0

0
0

0
0

133.3333
0

0
76.9231]

 
 
 
 
 
 
 
 
 
 

12𝑥4

 

Due to the assumptions LQR makes, that all states are known and whole state is 

available to control at all times, that is simply unrealistic not only there will always 

be measurement noise interfering the system but also this technique become 
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impractical when some states cannot be measured directly. When some of the 

states cannot be measured, state prediction technique always can be used. In order 

to predict all the states in the system through measured ones we need to use LQG. 

LQG and LQR have almost the same representation and mechanism except noises 

included, which are 𝑤 and 𝑣. These noises mean measurement noise and process 

noise respectively.  

Thus, LQG state space representation as follows: 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑤      (3.11) 

𝑦 = 𝐶𝑥 + 𝑣       (3.12) 

For the simplicity, it is assumed that these noises are zero mean uncorrelated white 

Gaussian noises.  

To use LQG control in a system one must follow these steps. Firstly, �̂� estimation 

must be calculated for the full state of 𝑥 using measurements and secondly, LQR 

controller must be apply to the system and it should use the estimation �̂� in place of 

the actual (presently non-measured) state of 𝑥. 

This whole process led us to use Kalman Filter as a state observer in the system to 

estimate �̂� . Further details and expressions about Kalman Filter can be found in 

Chapter 4. 
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4.TURBULENCE AND NOISE FILTERING 

The goal of this thesis is to state the difference of the turbulence and the Gaussian 

white noise effects on the system. In this chapter Kalman Filter employed as a state 

observer. Through Kalman Fillter these disturbances will be extracted from the 

quadrotor system. 

4.1 Wind Shear Turbulence Model 

Wind shear is a change in wind speed and/or direction over a short distance and it 

is a non – Gaussian turbulence. It can occur either horizontally or vertically and is 

most often associated with strong temperature inversions or density gradients. Wind 

shear can occur at high or low altitude and near buildings [30] and these situations 

are most likely to happen to a quadrotor in reality. According to these reasons, wind 

shear turbulence model was chosen to study and in this thesis only low altitude (at 

6 meters) will be discussed.  

In Figure 4.1 Matlab&Simulink’s wind shear model can be seen. 

 

Figure 4.1     Wind shear model [31] 

This model uses height in meters and Direct Cosine Matrix (DCM) and calculates 

the mean wind speed in the Earth axis and the output is the mean wind speed in the 

body axis. The equation for the mean wind speed in the Earth axis is: 

𝑢𝑊 = 𝑊6

ln(
ℎ

𝑧0
)

ln(
20

𝑧0
)
      (4.1) 

 Where ℎ is 3 m < ℎ < 304.8 m, 𝑢𝑊 is the mean wind speed, 𝑊6 is the measured 

wind speed at an altitude of 6 meters, ℎ is the altitude and 𝑧0 is a constant equal to 

0.045 meters for category C flight phases and 0.6 meters for all other flight phases 

[31]. 
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4.2 Kalman Filter 

Large amount of literature on this filtering technique is available. A detailed 

derivation and study on this topic can be found in Optimal Filtering by Anderson and 

Moore [32]. To explain briefly, the Kalman Filter is a state observer for the stochastic 

cases, where Gaussian zero-mean noise added to the both inputs and outputs. 

Kalman Filter scheme, which is shown in Figure 4.2. 

 

Figure 4.2     Kalman state-observer scheme [31] 

The filter’s linear model is: 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑤      (4.2) 

𝑦 = 𝐶𝑥 + 𝑣       (4.3) 

Kalman Filter uses system’s inputs and outputs, then generates an optimal estimate 

of �̂� and �̂� for all states whereas eliminating the noise effects. 

�̇̂� = 𝐴�̂� + 𝐵𝑢       (4.4) 

�̂� = 𝐶�̂�       (4.5) 

Where 𝑤 is in the LQG, white process noise and 𝑣 is as in the LQG, white 

measurement noise.  

In Figure 4.3 mathematical formulation of Kalman Filter illustrated. Kalman Filter 

executes 6 steps over and over again with a sample time between the executions 

[33]. 
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Figure 4.3     Mathematical Formulation of Kalman Filter 

State prediction occurs when Kalman Filter predicts the next state using the current 

state and control signals. A block diagram for Kalman Filter is in figure 4.4. 

 

Figure 4.4     Kalman state observer Mathworks’ block diagram [34] 

Kalman filter as state observer is used when some of the states cannot measured. 

In this thesis Kalman Filter employed as a state observer along with the LQR, which 

is a LGQ control can be found in Figure 4.5. 
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Figure 4.5     Kalman Filter as state observer and LQR 

When using Kalman Filter as state observer state space representation becomes: 

�̇̂� = 𝐴�̂� + 𝐵𝑢 + 𝐿(𝑦 − 𝐶�̂�)     (4.6) 

and the necessary calculations for the state observer: 

𝐿 = 𝑃𝐶𝑇𝑅−1       (4.7) 

0 = 𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝑄𝑌    (4.8) 

When 𝑃 ≥ 0, 

𝑄 = 𝐸(𝑤𝑤𝑇) and 𝑅 = 𝐸(𝑣𝑣𝑇)    (4.9) 

The Ricatti equation has its origin in the minimization of the cost functional[35]. 

𝐽[�̂�(∙)] = ∫ [(�̂� − 𝑥)(�̂� − 𝑥)𝑇]𝑑𝑡
0

−∞
    (4.10) 

Another important case to use Kalman Filter as a state observer in LQG are that, 

the state matrices must be both controllable and observable. Both for controllability 

𝒞 = [𝐵 𝐴𝐵 𝐴2𝐵 …𝐴𝑛−1𝐵] and observability 𝒪 = [𝐶 𝐶𝐴 𝐶𝐴2 …𝐶𝐴𝑛−1] must be full 

rank. 

𝑄 and 𝑅 matrices in both Kalman observer and LQR control must be chosen wisely. 

Otherwise, the regulation takes time to reach zero error and also Kalman filter 

cannot estimate the states accurately. 
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5. SIMULATION RESULTS AND DISCUSSION  

5.1 PID Control Results 

PID control for attitude and altitude performs great results under wind turbulence, 

which is wind shear in this thesis. Figure 5.1 shows quadrotor system’s response to 

the step signal. PID control for the attitude and altitude control rises with zero 

overshoot and settles around 5.5 seconds for all controls. 

 

Figure 5.1     Response of the quadrotor system with PID control 

As it could be seen throughout this thesis, the mentioned goals of this work are 

achieved. Wind shear can be eliminated by PID control and with LQG controller 

(LQR and Kalman state observer) both Wind Shear and Gaussian white noise can 

be eliminated. 

Figure 5.2 shows Wind Shear turbulence model’s output, which is a wind velocity in 

the body axis.  



40 
 

 

Figure 5.2     Wind Shear response 

In Figure 5.3 without Wind Shear effect on the body velocity of the quadrotor can be 

seen. To see the effect of the Wind Shear on the quadrotor Wind Shear added body 

velocity is shown in Figure 5.4. 
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Figure 5.3     Quadrotor’s body velocity without Wind Shear effect 

 

Figure 5.4     Wind Shear effect on quadrotor’s body velocity 

In Figure 5.5 Wind Shear’s output wind velocity applied to the inertial positions (x, y 

and z axis) can be seen. Recall that desired signals are step signals but the Wind 

Shear disturbs the step signal. 



42 
 

 

Figure 5.5     Wind shear effect on quadrotor’s inertial frame 

It is clear from the Figure 5.1, PID control for the given gains can eliminate the Wind 

Shear effect form the inertial frame. The constructed quadrotor model is stable and 

controllable under the wind turbulence. 

5.2 LQG Control Results 

Expectation is LQG regulates and estimates all the states and after these processes 

all states should approach to zero. The amount of time spent for these processes 

shows the controller’s performance. 
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Figure 5.6     Linearized quadrotor system’s step response 

Figure 5.6 shows LQG control’s estimation and reference tracking result of an 

applied reference step signal r. Another expression to this figure is systems step 

response to the reference step signal. 
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Figure 5.7     LQG controller’s output without Gaussian white noise 

LQG’s regulation and estimation performance without Gaussian white noise can be 

seen in Figure 5.7. All states approaches to zero after approximately 12 seconds.  

 

Figure 5.8     LQG controller’s output with Gaussian white noise 

Gaussian white noise added system’s response can be seen in Figure 5.8. Again 

LQR’s regulation and estimation is expected, all states reaches to zero after 

approximately 12 seconds. 



45 
 

In Figure 5.9 shows closed loop state feedback control response to initial conditions, 

which are equals to 1. Also in this figure, wind shear effect can be seen clearly on 

the output. In spite of the wind shear effect on the system LQG estimates and 

regulates successfully.  

 

Figure 5.9     Closed loop controller’s response to the initial conditions 

From these simulation results, one can say that linear control techniques 

successfully applied to the linearized system. System’s linearization at the 

linearization point is done correctly. Also results are promising in the way that the 

system can regulate the states and estimate them close to the actual values in spite 

of the disturbances. Another point to state, Gaussian white noise and Wind Shear 

are effecting the system differently. From figures 5.8 and 5.9 effects of these 

disturbances can be seen. 
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6. CONCLUSION AND FUTURE WORK 

Throughout the applied control techniques, the proposed thesis goals are achieved. 

The quadrotor’s principal flight dynamics were investigated and a nonlinear model 

was derived using Newton – Euler formalism. According to the assumptions 

system’s parameters such as moments of inertia are derived. Performance of the 

PID control under wind shear turbulence examined. Relatively more difficult 

disturbance, Gaussian white noise added to the quadrotor system along with the 

Wind Shear and these disturbances eliminated in the linearized model using LQG 

control. For linearization, an equilibrium flight operating point was chosen and LQG 

performed on this point successfully. Kalman Filter was employed as a state 

observer to estimate unmeasurable states. Due to avoid sensor modelling and 

sensor calibration artifacts, the Kalman observer, namely LQG structure, used in the 

system. Owing to LQG’s estimation feature the designed control system 

successfully eliminated the disturbances. Wind shear is not a Gaussian disturbance, 

it is a statistics of velocities differences between points with some distance apart. 

The results shows that, Wind Shear and Gaussian white noise had different effects 

on the quadrotor system and the proposed control approach successfully rejected 

these disturbances. 

However, in order to make this model close to the reality as possible as sensors can 

be added to the model. In this study, there are no robustness investigated. In real 

life robustness is a real issue and this model can be improved employing 𝐻∞ control. 

Another suggestion to improve the current study is LQG control can be applied to 

velocities along with the positions. This way, a cascaded control structure can be 

achieved and even better results can be obtained. Also, the designed model can be 

built and the performance of these applied control techniques can be investigated 

not only in simulation but also in real life outside conditions. 
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