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Abstract The special Buchdahl-inspired metric obtained in
a recent paper [Phys. Rev. D 107, 104008 (2023)] describes
asymptotically flat spacetimes in pure R2 gravity. The met-
ric depends on a new (Buchdahl) parameter k̃ of higher-
derivative characteristic, and recovers the Schwarzschild
metric when k̃ = 0. It is shown that the special Buchdahl-
inspired metric supports a two-way traversable Morris–
Thorne wormhole for k̃ ∈ (−1, 0) in which case the Weak
Energy Condition is formally violated, a naked singularity
for k̃ ∈ (−∞,−1) ∪ (0,+∞), and a non-Schwarzschild
structure for k̃ = −1.

1 Introduction

Recently, there has been a surge in interest in wormholes,
particularly with the Morris–Thorne ansatz as a guiding prin-
ciple [1,2]. Supermassive objects have been discovered and
used as a test bed for gravity, and although wormholes are of
an exotic nature, they may interact with ordinary matter and
can be observed via their astrophysical signatures [3–19].
As a result, it is natural to seek, static and rotating [20–24],
wormholes in modified theories of gravity that permit vio-
lation of the geometric form of the Weak Energy Condition
(WEC) without assuming the existence of exotic matter.

All we know about exotic matter is that (a) it violates
our perception of energy, that is, an observer may measure
some negative amount of rest energy density and (b) it has
the ability to sustain wormholes. So far there has been no
general theory about exotic matter and most of – if not all
– the wormhole solutions derived so far were obtained geo-
metrically upon running the field equations of general rela-
tivity (GR) from left to right: The energy–momentum tensor
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(EMT) derived this way was exotic. In this work we rather
run the field equations of purely quadratic gravity in the usual
way, that is, by solving the field equations.

In generalized and modified theories of GR, explicit EMT
are not usually added to the field equations. Instead, extra
terms or corrections are introduced to the gravitation sector,
which can play the role of exotic matter without truly being
exotic matter. An example is the Brans–Dicke (BD) action,
∫
d4x

√−g
[
φ R − ω

φ
∂μφ∂μφ

]
, which allows the formation

of wormholes [25–28], where the scalar field φ acts as an
exotic form of matter that violates the WEC. Another inter-
esting case is the family of f (R) gravity, which in general
can be formally cast as a scalar-tensor theory but the scalar
field is directly associated with R without its own dynamics.
As such, the scalar field does not truly represent an exotic
form of matter. In the case of pure R2 gravity, the scalar field
is trivially identical to R.

Violation of the energy conditions, and particularly of the
WEC, has direct astrophysical consequences. In [29] it was
shown how the non-violation of the WEC constrains the time
evolution of both the Hubble parameter and coordinate dis-
tance and sets an upper bound for �M . Similar conclusions
were derived in [30]. In the other case, when the WEC is
violated, no such constraints emerge. Assuming that the SEC
and the DEC hold, a first proof of the Cosmic No-Hair Theo-
rem was given in [31]. Another theorem on the future fate of
a spacetime, the Lorentzian Splitting Theorem, was proven
upon admitting the SEC [32]. From a quantum-mechanical
point of view, all local energy conditions are violated by
quantum fields and also by some classical fields as the non-
minimally coupled scalar fields [33,34] and the future-eternal
inflating spacetimes [35]. However, the scale of violation
can be minimized for some cut-and-paste geometric con-
structions [36], and for type I wormholes without the cut-
and-paste construction [5] where the extent of exotic matter
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has been shown to be inversely proportional to the square of
the mass of the wormhole. A detailed compte-rendu of the
consequences and plausible violations of the energy condi-
tions are reported in [37], instances include the possibility of
formation of cosmological singularities in spatially open or
flat spacetimes if the WEC is observed and the possibility of
superluminal motion (wrap drive and traversable wormholes)
if the WEC is violated.

The pure R2 theory was first proposed by Buchdahl in
the early 1960s [38] and has recently experienced a revival
of interest, with active investigations into its theoretical
properties as well as its implications for black holes and
cosmology[39–57]. Among the various extensions of GR,
the pure R2 theory enjoys several distinct advantages. It is
a parsimonious theory, having only one term in the action,
(2κ)−1

∫
d4x

√−gR2, where the gravitational coupling κ

is a dimensionless parameter. It is the only theory that is
both scale invariant and ghost-free. Regarding the former, it
actually possesses a restricted scale invariance under a Weyl
transformation, gμν → �2(x)gμν , where �(x) obeys a har-
monic condition, �� = 0, as discovered in [58]. Regarding
the latter, as a member of f (R), its scalar degree of freedom
involves only second-order derivatives when transitioning
from the Jordan frame to the Einstein frame, thereby evad-
ing the Ostrogradsky instability that often plagues higher-
derivative gravity [59,60]. Furthermore, pure R2 gravity has
been shown propagate two massless modes: a spin-2 tensor
mode and a spin-0 scalar mode, each carrying it own signif-
icance [61]. On one hand, the massless spin-2 tensor mode
indicates the emergence of a long-range potential with the
correct Newtonian tail ∼ 1/r [62]. On the other hand, the
massless spin-0 scalar mode could potentially be responsible
for an additional long-range potential, thereby introducing
new physics.

One concrete realization of new physics in pure R2 grav-
ity manifests through the work of Buchdahl in 1962, in which
he originated a program aimed at finding vacuum solutions
for the theory [38]. He was able to make significant progress
with his efforts boiling down to solving a non-linear second-
order ordinary differential equation (ODE). If an analytical
solution to his ODE could be found, then the vacuo solutions
he sought would automatically ensue. Unfortunately, Buch-
dahl deemed the ODE insoluble, prompting him to suspend
further pursuit. Consequently, his groundbreaking paper has
remained relatively obscure within the gravitational research
community for the past 60 years. However, recent advance-
ments made by one of us have revitalized Buchdahl’s pro-
gram and brought it to fruition. Section 2 in this paper will
review its final outcome.

Significantly, the Buchdahl-inspired solutions exhibit
non-constant scalar curvature, a distinctive feature resulting
from the fourth-derivative nature of the theory. This non-
constant scalar curvature is controlled by a new parameter

known as the Buchdahl parameter k. Remarkably, these solu-
tions defy the generalized Lichnerowicz “theorem” proposed
in [39,63–65], which stipulates that static vacuum solutions
of pure R2 gravity must possess constant scalar curvature
exclusively. The Buchdahl-inspired solutions evade this “the-
orem” by circumventing one of the central assumptions [54].
The non-constant scalar curvature observed in these solu-
tions is a manifestation of higher-derivative effects, which
are encapsulated by the Buchdahl parameter k.

In this paper, we shall use the closed analytical vacuum
solution for pure R2 gravity derived in Ref. [53] to show the
formation of a wormhole that connects two asymptotically
flat spacetime sheets via a “throat”. This wormhole is enabled
by the high-derivative nature of the theory without requiring
complicated ingredients or true exotic matter.

The paper is structured as follows. In Sect. 2 we review
Buchdahl-inspired metrics obtained in Refs. [52,53,55];
in Sect. 3 we present two additional representations for
Buchdahl-inspired metrics that are asymptotically flat; in
Sect. 4 we map the special (asymptotically flat) Buchdahl-
inspired metrics to the Morris–Thorne ansatz, investigate
their properties, and construct a wormhole when the Weak
Energy Condition is violated.

2 Buchdahl-inspired R2 spacetimes

In Ref. [52] we advanced a program initiated by Buchdahl in
1962 seeking vacuo configurations for pure R2 gravity [38].
The field equation in vacuo

R
(

Rμν − 1

4
gμνR

)

+ (
gμν� − ∇μ∇ν

)R = 0 (1)

has a static spherisymmetric solution which is expressible in
terms of two auxiliary functions p(r) and q(r) per

ds2 = ek
∫ dr

r q(r)

{

− p(r)q(r)

r
dt2 + p(r) r

q(r)
dr2 + r2d�2

}

(2)

The two functions p and q are coupled via a pair of first-order
evolution-type ODE’s:

dp

dr
= 3 k2

4 r

p

q2 (3)

dq

dr
= (1 − � r2) p (4)

Reflecting the fourth-order nature of quadratic gravity, this
solution is specified by four parameters: �, k, p0 and q0.
When k = 0 the evolution rules recover the Schwarzschild-
de Sitter. When k 	= 0, the Ricci scalar is non-constant and
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is given by

R(r) = 4� e−k
∫ dr

r q(r) (5)

It approaches 4� at spatial infinity, indicating an asymptotic
de Sitter behavior.

In Ref. [53] we further advanced the solutions for the case
� = 0 and obtained an exact closed analytical form for
an asymptotically flat non-Schwarzschild metric, which was
called the special Buchdahl-inspired metric, expressible as1

ds2 =
∣
∣
∣1 − rs

r

∣
∣
∣
k̃

×
{

−
(

1 − rs

r

)
dt2 + dr2

1 − rs
r

ρ4(r)

r4 + ρ2(r)d�2
}

(6)

ρ2(r) := ζ 2r2
s

∣
∣1 − rs

r

∣
∣ζ−1

(
1 − sgn

(
1 − rs

r

) ∣
∣1 − rs

r

∣
∣ζ

)2 (7)

in which k̃ := k
rs

and ζ :=
√

1 + 3k̃2. It contains two param-

eters, rs playing the role of a Schwarzschild radius, and k̃ a
new (Buchdahl) dimensionless parameter. The solution holds
for all value of r ∈ R except at r = 0 and r = rs. The radial
direction thus comprises of three sections:

1. The “exterior”, r > rs,
2. The “interior”, 0 < r < rs,
3. The “repulsive” gravity domain, r < 0. We exclude this

unphysical region from our consideration.

Note that the two components gtt and grr flip their signs
at the interior–exterior boundary, r = rs. The Kruskal–
Szekeres diagram is analytically constructed in Ref. [53].

Although the special Buchdahl-inspired metric, Eqs. (6)
and (7), is Ricci-scalar flat, viz. R = 0, it is not Ricci flat,
hence non-Schwarzschild. Moreover, it can be verified that
[55]

R−1∇μ∇νR = Rμν 	= 0 (8)

and (upon taking the trace)

R−1 �R = R = 0 (9)

That is to say, the solution formally obeys the following equa-
tion

Gμν := Rμν − 1

2
gμνR = R−1∇μ∇νR (10)

with the non-vanishing term in the right hand side acting
as a “quasi” energy–momentum tensor (EMT) and making

1 Note that we used a different set of notations for variables in that
paper.

the solution non-Schwarzschild. This “quasi” EMT is thus a
surrogate of exotic matter which would sustain a wormhole
under certain circumstances to be explored in this paper.

3 Two new representations for asymptotically flat
Buchdahl-inspired metrics

3.1 The isotropic coordinates

For the “exterior” section, let us choose a variable r̄ and a
function g(r̄) to fulfill two requirements:

ρ2(r) = g(r̄)r̄2, (11)

ρ4(r)
(
1 − rs

r

)
r4

(
dr

dr̄

)2

= g(r̄) (12)

With ρ(r) given in Eq. (7), solving them 2

dr̄

r̄
= ρ(r)

(
1 − rs

r

) 1
2

dr

r2 = ζ

(
1 − rs

r

) ζ−2
2

1 − (
1 − rs

r

)ζ
d

(
1 − rs

r

)
(14)

giving

r̄ = r∗ ln
1 + (

1 − rs
r

) ζ
2

1 − (
1 − rs

r

) ζ
2

(15)

or

r = rs

⎛

⎝1 −
∣
∣
∣
∣
1 − r∗

r̄

1 + r∗
r̄

∣
∣
∣
∣

2
ζ

⎞

⎠

−1

(16)

and

g(r̄) = ρ2(r)

r̄2 = ζ 2r2
s

r̄2

(
1 − rs

r

)ζ−1

(
1 − (

1 − rs
r

)ζ
)2 (17)

= ζ 2r2
s

16r2∗

(
1 + r∗

r̄

)4
∣
∣
∣
∣
1 − r∗

r̄

1 + r∗
r̄

∣
∣
∣
∣

2
ζ
(ζ−1)

(18)

=
(

1 − ζ 2r2
s

16r̄2

)2
∣
∣
∣
∣
∣

1 − ζrs
4r̄

1 + ζrs
4r̄

∣
∣
∣
∣
∣

− 2
ζ

choosing r∗ = ζ rs

4

(19)

2
∫

dx
xa−1

1 − x2a = 1

a

∫
d(xa)

1 − x2a = 1

2a
ln

1 + xa

1 − xa
(13)
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rendering the metric

ds2 = −
∣
∣
∣
∣
∣

1 − ζrs
4r̄

1 + ζrs
4r̄

∣
∣
∣
∣
∣

2
ζ
(k̃+1)

dt2

+
∣
∣
∣
∣
∣

1 − ζrs
4r̄

1 + ζrs
4r̄

∣
∣
∣
∣
∣

2
ζ
(k̃−1) (

1 − ζ 2r2
s

16r̄2

)2 (
dr̄2 + r̄2d�2

)

(20)

It is straightforward to see that these expressions are
unchanged upon the “image reflection”

4r̄

ζrs
� ζrs

4r̄
(21)

This means that the two separate domains r̄ >
ζrs
4 and

r̄ <
ζrs
4 are reciprocal images, with the value ζrs/4 being a

“reflection point”. Also, the case k̃ = 0 (viz. ζ = 1) recovers
the Schwarzschild metric in Weyl’s isotropic coordinates:

ds2 = −
(

1 − rs
4r̄

1 + rs
4r̄

)2

dt2 +
(

1 + rs

4r̄

)4 (
dr̄2 + r̄2d�2

)

(22)

Kretschmann invariant

The Kretschmann scalar K := RμνρσRμνρσ is given in
[53] and we shall not reproduce it here. We only report its
expression for the isotropic coordinates which, by design,
only cover the “exterior” section

K = 2

ζ 8r4
s

∣
∣
∣
∣
∣

1 + ζrs
4r̄

1 − ζrs
4r̄

∣
∣
∣
∣
∣

4
(

2+ k̃−1
ζ

) ⎛

⎝1 −
(

1 − ζrs
4r̄

1 + ζrs
4r̄

)2
⎞

⎠

6

×
⎧
⎨

⎩
4k̃2(k̃ + 1)

(
1 − ζrs

4r̄

1 + ζrs
4r̄

)2

+ζ
(

4k̃3 − 5k̃2 − 3
)

⎛

⎝1 −
(

1 − ζrs
4r̄

1 + ζrs
4r̄

)4
⎞

⎠

+
(

9k̃4 − 2k̃3 + 10k̃2 + 3
)

⎛

⎝1 +
(

1 − ζrs
4r̄

1 + ζrs
4r̄

)4
⎞

⎠

⎫
⎬

⎭

(23)

Remark 1 Interestingly, the “non-analytic” piece in K is iso-

lated in

∣
∣
∣
∣

1+ ζrs
4r̄

1− ζrs
4r̄

∣
∣
∣
∣

4
(

2+ k̃−1
ζ

)

. Since 2ζ + k̃− 1 > 0 ∀k̃ ∈ R, this

non-analytic piece is solely responsible for the divergence of
K at the reflection point ζ rs

4 (except for k̃ = 0 and k̃ = −1,
see below).

Remark 2 Only for k̃ = 0 (ζ = 1) and k̃ = −1 (ζ = 2),
does the exponent 4

ζ
(2ζ + k̃ − 1) equal 4. The non-analytic

piece gets canceled by the terms

(
1− ζrs

4r̄

1+ ζrs
4r̄

)4

insides the curly

bracket. For k̃ = 0 (ζ = 1)

K = 12r2
s

r̄6

(r̄ + rs/4)12 (24)

whereas for k̃ = −1 (ζ = 2)

K = 3

8
r2

s
r̄6

(r̄ + rs/2)12 (25)

In both cases, the Kretschmann scalar carries the same func-
tion form.

3.2 Another representation

Let us define a new radial coordinate r ′ such that

1 − ζrs

r ′ := sgn
(

1 − rs

r

) ∣
∣
∣1 − rs

r

∣
∣
∣
ζ

(26)

Then

dr ′

r ′2 =
∣
∣
∣1 − rs

r

∣
∣
∣
ζ−1 dr

r2 (27)

and

ρ2(r) = r ′2
∣
∣
∣
∣1 − ζrs

r ′

∣
∣
∣
∣

ζ−1
ζ

(28)

The metric given in (6), (7) can be brought into

ds2 = −sgn

(

1 − ζrs

r ′

) ∣
∣
∣
∣1 − ζrs

r ′

∣
∣
∣
∣

k̃+1
ζ

dt2

+ sgn

(

1 − ζrs

r ′

) ∣
∣
∣
∣1 − ζrs

r ′

∣
∣
∣
∣

k̃−1
ζ

dr ′2

+
∣
∣
∣
∣1 − ζrs

r ′

∣
∣
∣
∣

k̃−1
ζ

+1

r ′2d�2 (29)

This representation brings the special Buchdahl-inspired
metric under the umbrella of the generalized Campanelli–
Lousto solution in Brans–Dicke gravity that we uncover in
another report [66].
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4 Morris–Thorne–Buchdahl wormholes

In terms of x := 1 − rs
r ∈ R, the special Buchdahl-inspired

metric becomes

ds2 = −sgn(x) |x |k̃+1 dt2 + ζ 4r2
s

sgn(x) |x |k̃+2ζ−3

(1 − sgn(x) |x |ζ )4
dx2

+ ζ 2r2
s

|x |k̃+ζ−1

(1 − sgn(x) |x |ζ )2
d�2 (30)

The areal radius in the class is

R = ζrs
|x | 1

2 (k̃+ζ−1)

1 − sgn(x) |x |ζ (31)

For the exterior:

dR

dr
= ζr2

s

2r2

x
1
2 (k̃+ζ−3)

(
1 − xζ

)2

[
(k̃ − 1 + ζ ) − (k̃ − 1 − ζ )xζ

]

(32)

which would have an acceptable root

xext =
(
k̃ − 1 +

√
1 + 3k̃2

k̃ − 1 −
√

1 + 3k̃2

) 1√
1+3k̃2

∈ (0, 1) (33)

if k̃ ∈ (−1, 0).
For the interior:

dR

dr
= − ζr2

s

2r2

(−x)
1
2 (k̃+ζ−3)

(
1 + (−x)ζ

)2

[
(k̃ − 1 + ζ ) + (k̃ − 1 − ζ )(−x)ζ

]

(34)

which would have an acceptable root

xint = −
(

− k̃ − 1 +
√

1 + 3k̃2

k̃ − 1 −
√

1 + 3k̃2

) 1√
1+3k̃2

∈ (−∞, 0) (35)

if k̃ ∈ (−∞, 1) ∪ (0,+∞).
The behavior of R as a function of r is shown in Fig. 1.

Panel (B) is representative of k̃ ∈ (−1, 0) exhibits a mini-
mum for R(r) in the exterior.

We shall bring the metric above to the Morris–Thorne
ansatz [2]

ds2 = −e2�(R)dt2 + dR2

1 − b(R)
R

+ R2d�2 (36)

If we focus on the “exterior” region alone, then (x ∈ (0, 1))

ds2 = −xk̃+1dt2 + ζ 4r2
s
xk̃+2ζ−3

(1 − xζ )4 dx
2

+ζ 2r2
s

xk̃+ζ−1

(1 − xζ )2 d�2 (37)

For the exterior, viz. x ∈ (0, 1), let us make a further coor-
dinate transformation

y := xζ ∈ (0, 1) (38)

and denoting A := k̃+1
ζ

and B := k̃−1
ζ

(again, ζ =
√

1 + 3k̃2)

ds2 = −yAdt2 + (ζ rs)
2 yB

(1 − y)2

[
dy2

(1 − y)2 + y d�2
]

(39)

Fig. 1 R vs r for the special Buchdahl-inspired metric; rs = 1. Panel (B), representative of k̃ ∈ (−1, 0), yields a minimum for R(r) and corresponds
to a wormhole
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Fig. 2 Proper radial distance (upper panel) and embedding diagram
(lower panel)

In summary, the areal radius is defined as

R = ζ rs
y

B+1
2

1 − y
(40)

The redshift function and the shape function are given by,
respectively,

e2�(R) = yA, (41)

1 − b(R)

R
= (1 − y)4

ζ 2r2
s y

B

(
dR

dy

)2

(42)

= 1

4y
[(B − 1)y − (B + 1)]2 (43)

for the region y � y∗ where

y∗ = B + 1

B − 1
(44)

corresponds to xext in Eq. (33).

The four Morris–Thorne constraints

In the exterior, r > rs, hence x ∈ (0, 1), taking derivative of
Eq. (31):

dR

dy
= ζ rsy

B−1
2

2(1 − y)4 [(B + 1) − (B − 1)y] (45)

The equation dR
dx = 0 has a single root at

y∗ = B + 1

B − 1
(46)

This root is acceptable, viz. y∗ ∈ (0, 1) if

B < −1 or − 1 < k̃ < 0 (47)

The minimum

R∗ = ζ rs

2
(1 − B)

1−B
2 (−1 − B)

1+B
2 (48)

Constraint #1.—The redshift function �(R) (given in
(41)) be finite everywhere (hence no horizon).

Constraint #2.—Minimum value of the R-coordinate, i.e.
at the throat of the wormhole, R∗ being the minimum value
of R, given in Eq. (48).

Constraint #3.—Finiteness of the proper radial distance,
i.e. b(R)/R ≤ 1 (for R ≥ R∗) throughout the space. The
equality sign holds only at the throat. This is required in
order to ensure the finiteness of the proper radial distance
l(R) given in (55) where the ± signs refer to the two asymp-
totically flat regions which are connected by the wormhole.
Note that the condition b(R)/R ≤ 1 assures that the metric
component gRR does not change its sign for any R ≥ R∗.

Constraint #4.—Asymptotic flatness condition, i.e. as
l → ±∞ (or equivalently, R → ∞ or r → ∞ or x → 1−)
then b(R)/R → 0.

Embedding

With y∗ defined in Eq. (46), the shape function in Eq. (43) is

1 − b(R)

R
= (B − 1)2

4y
(y − y∗)2 ≥ 0 (49)
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Fig. 3 ζ -Kruskal–Szekeres diagrams for the asymptotically flat
Buchdahl-inspired spacetimes for k̃ ∈ (−∞,−1) ∪ (0,+∞) (the case
of naked singularity, shown in left panel) and for k̃ ∈ (−1, 0) (the case
of wormhole, shown in right panel). Left panel: on the infalling radial
timelike trajectory (blue line), a particle in Region (I) eventually hits
the naked singularity, r = rs. Right panel: the wormhole “throat” is
depicted by the red lines, which further split Region (I) into (Ia) and

(Ib), and Region (III) into (IIIa) and (IIIb). On the radial trajectory
A → B → C → D, a particle in Region (Ia) first enters the wormhole
mouth at point B (hence, an infalling motion) then escape into Region
(IIIa) by emerging at the other mouth at point C (hence, on outgoing
motion). As the two red lines are “glued” together to form a wormhole
that connects Region (Ia) and Region (IIIa), the two opposite points B
and C represent the same spacetime event

In the embedding diagram, the MT ansatz

ds2 = −e2�(R)dt2 +
(

1 +
(
dz

dR

)2
)

dR2 + R2d�2 (50)

yields

dz

dR
= ± 1

√
R

b(R)
− 1

= ±
√
b(R)/R√

1 − b(R)/R
(51)

= ±
√

4y − (B − 1)(y − y∗)2

(B − 1)(y − y∗)
(52)

Obviously dz/dR diverges at y = y∗, meaning that in the
embedding diagram (the lower panel of Fig. 2), z(R) is ver-
tical at y = y∗,the “throat” of the wormhole. The function
z(R) is a combination of Appell hypergeometric functions
that is not particularly illuminating and hence will not be
produced here.3

3 Specifically, z(R) = ±ζ rs
∫ y
y∗ dy

y
B
2

(1−y)2

√
1 − ((B−1)y−(B+1))2

4y .

Nevertheless, the proper radial distance is simpler to
obtain:

l(R) = ±
∫ R

R∗

dR
√

1 − b(R)
R

(53)

= ±ζ rs

∫ y

y∗
dy

y
B
2

(1 − y)2 (54)

= ± ζ rs

1 + B/2
×

[

y1+B/2
2F1

(
2, 1 + B/2; 2 + B/2; y

)

− y1+B/2∗ 2F1

(
2, 1 + B/2; 2 + B/2; y∗

)]

(55)

As an example, the upper panel of Fig. 2 plots the proper
radial distance for k̃ = −0.5, viz. B ≈ −1.134, y∗ ≈ 0.0628,
r∗ ≈ 1.14 rs, R∗ ≈ 1.7 rs. A “throat” is manifest at R = R∗.

In the range of k̃ ∈ (−∞,−1) ∪ (0,+∞), The Kretsch-
mann invariant diverges at y = 0 (i.e., r = rs), indicat-
ing a physical singularity on the interior–exterior boundary,
y = 0. As a result, the spacetime is not geodesically com-
plete, and the geodesics terminate at the physical singular-
ity. The ζ−Kruskal–Szekeres (KS) diagram previously con-
structed in Ref. [53] is reproduced in Fig. 3 here for the
reader’s convenience. In the left panel of Fig. 3, we also
show the radial infalling motion of a massive particle along
the trajectory A → B, with the particle eventually hitting the
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physical singularity, represented by point B on the interior–
exterior boundary.

In the range of k̃ ∈ (−1, 0), the Kretschmann invariant
likewise diverges at y = 0 (i.e., r = rs), indicating a phys-
ical singularity on the interior–exterior boundary, y = 0.
However, since the areal radius possesses a minimum value
at y∗ = B+1

B−1 ∈ (0, 1), we can generate a wormhole solu-
tion by “gluing” the region y∗ ≤ y < 1 (corresponding
to r∗ ≤ r < +∞ as shown in Panel (B) of Fig. 1, with
r∗ = rs

1−y1/ζ∗
> rs) with its symmetric counterpart (also in

the region y∗ ≤ y < 1) in the ζ−KS diagram. The right panel
of Fig. 3 shows how this is done. The wormhole “throat” is
represented by the two red lines, r = r∗, which further split
Region (I) into (Ia) and (Ib), and Region (III) into (IIIa) and
(IIIb). That is to say, we are connecting an asymptotically
flat exterior sheet (i.e., Region (Ia)) with another asymp-
totically flat exterior sheet (i.e., Region (IIIa)), which are
mirror images of each another with respect to a sign flip
(T, X) ↔ (−T,−X) in their ζ−KS coordinates.

In this construction, both the upper and lower sheets of the
wormhole correspond to r∗ ≤ r < +∞ and they approach
asymptotic flatness at spatial infinity. The two sheets are
smoothly connected at the “throat” at y = y∗, where z(R)

becomes vertical, hence ensuring a smooth connection. The
upper and lower sheets are distinguished by the ± sign in the
proper length parameter l, per Eq. (55), which runs contin-
uously from −∞ to ∞ as a traveler moves from the lower
sheet of the wormhole to the upper one.

In the right panel of Fig. 3, the radial infalling motion of
a massive particle is depicted by the trajectory A → B in
Region (Ia), with B lying on the “throat”. The particle then
emerges at point C (which also lies on the “throat” and is
opposite to point B on the ζ−KS diagram) then continue on
the path C → D in Region (IIIa). Note that points B and C
represent the same spacetime event.

Violation of the weak energy condition

Formally, the geometric form for the Weak Energy Condition
requires that Gμν tμtν ≥ 0 for every future-pointing timelike
vector tμ; e.g., see Ref. [67]. In particular, G00 ≥ 0.

The special Buchdahl-inspired metric has the 00−
component of the Einstein tensor

G00 = k̃(k̃ + 1)

2r2
s ζ 4

[
1 − sgn

(
1 − rs

r

) ∣
∣1 − rs

r

∣
∣ζ

]4

∣
∣1 − rs

r

∣
∣2(ζ−1)

(56)

For k̃ ∈ (−1, 0), the exterior region exhibits a wormhole
“throat” as can be seen in Panel (B) of Fig. 1. At the same
time, G00 < 0 ∀r for k̃ ∈ (−1, 0), thus violating the Weak
Energy Condition.

As Morris and Thorne envisioned [1], in a traversable
wormhole, light rays that enter it at one mouth then reemerge
at its other mouth have a cross-sectional area initially decreas-
ing and then increasing. In order for this phenomenon to
occur, there necessarily be some “gravitational repulsion”
near the “throat”, exerting influence on the light rays. In
Eq. (56), the magnitude of G00 monotonically increases as
one approaches the interior–exterior boundary, r = rs. For
k̃ ∈ (−1, 0), the negative and dominant G00 component
thus acts like gravitational repulsion. We expect that it could
leave signatures, distinguishing a wormhole from a black
hole [68,69].

Simultaneously, the interior–exterior boundary is a set of
naked singularities. Consequently, the spacetime for k̃ ∈
(−1, 0) accommodates both a wormhole connecting two
asymptotically flat exterior sheets (viz. Regions (Ia) and
(IIIa) in Fig. 3) and a set of naked singularities (belonging
to Regions (Ib) and (IIIb)), thereby representing a non-trivial
geometrical structure in this situation.

As mentioned in the concluding remark of Sect. 2, the
right hand side of Eq. (10) corresponds to a “quasi” energy–
momentum tensor, defined as (modulo a multiplicative con-
stant)

Tμν := R−1∇μ∇νR (57)

It was shown in Ref. [55] that despite the vanishing Ricci
scalar throughout spacetime, this “quasi” energy–momentum
tensor remains well-defined and is identical to the G00 com-
ponent presented in Eq. (56). It effectively serves as a surro-
gate to exotic matter required to sustain a wormhole.

5 Conclusion

In a previous work [53], we derived a special Buchdahl-
inspired metric that describes asymptotically flat spacetimes
in pureR2 gravity. This metric, expressed in a closed analyti-
cal form, enabled us to construct a Kruskal–Szekeres diagram
representing the maximal analytic extension for the metric.
The Buchdahl parameter k̃ in the metric is a new parame-
ter that reflects the higher-derivative nature of the pure R2

action.
In this paper, we present several additional advancements.

Firstly, we describe two additional representations of the met-
ric. Secondly, we examine the metric within the framework of
the Morris–Thorne ansatz. For values of k̃ falling within the
ranges (−∞,−1) and (0,+∞), the interior–exterior bound-
ary constitutes a naked singularity. However, for the range
k̃ ∈ (−1, 0), the areal radius has a minimum value in exterior
region. Despite the geodesic incompleteness of the solution
in this situation, where geodesics terminate on the singularity,
it is possible to shield the singularity by removing the region
of space neighboring the singularity and gluing the Kruskal–
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Szekeres symmetric copy of the remaining space region to
that same region. The Morris–Thorne–Buchdahl wormhole
constructed this way consists of a pair of asymptotically flat
spacetime sheets connected at a “throat” that allows two-way
passage.

Thirdly, we find that when a wormhole is formed, that
is, when k̃ ∈ (−1, 0), the Weak Energy Condition is for-
mally violated, even though no exotic matter is in pres-
ence. Therefore, pure R2 theory can support a wormhole
without the need for truly exotic matter in the energy–
momentum tensor or complicated ingredients in the gravi-
tation sector such as torsion, non-metricity, or non-locality.
Our work opens up new avenues for exploring the fascinating
properties of wormholes and naked singularities in higher-
derivative gravity theories. For wormholes and naked sin-
gularities of quadratic relativity, all known potential astro-
physical observations, including light deflection, precession,
shadow, and quasi-periodic oscillations are the subjects of
a future investigation [70] and cannot be carried out in this
work.

Another important question, even more important than all
that has been said, is the stability of the wormhole discussed
in this work. Stability analysis is a more involved issue [71–
75] as this necessitates to perform a perturbation analysis of
the metric, which will make the subject of another subsequent
paper. However, based on the generic analysis made in [76]
the wormhole is likely to be stable.
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Appendix A: The borderline case of k̃ = −1

For completeness, we shall briefly examine the k̃ = −1 case,
viz. ζ = 2. With x := 1 − rs

r , from (31), the areal radius is

Fig. 4 R vs r of the special Buchdahl-inspired metric for k̃ = −1,
rs = 1

R = 2rs

1 − sgn(x)x2 = 2rs

1 − sgn
(
1 − rs

r

) (
1 − rs

r

)2 (A1)

which is a monotonic increasing function for r ∈ R
+ and

R(r = rs) = 2rs, as shown in Fig. 4. In this coordinate, the
metric (30) becomes

ds2 = −sgn

(

1 − 2rs

R

)

dt2 + dR2

1 − 2rs
R

+ R2 d�2 (A2)

which differs from the Schwarzschild metric by the gtt com-
ponent. The equations of motion (EOM) in the exterior, viz.
R > 2rs, are

d

dτ

(

gσλ

dxλ

dτ

)

= 1

2
∂σ gμν

dxμ

dτ

dxν

dτ
(A3)

or (with E and l being two constants of motions, the dot
denoting derivative with respect to τ , and restricting to the
θ = π/2 plane)

ṫ = E for σ = λ = 0 (A4)

ϕ̇ = l

R2 for σ = λ = 2 (A5)

subject to a constraint

−ṫ2 + Ṙ2

1 − 2rs
R

+ R2ϕ̇2 = f =
{

0 for null geodesics

−1 for timelike geodesics

(A6)

We subsequently get

Ṙ2 =
(

1 − 2rs

R

)(

f + E2 − l2

R2

)

(A7)

= f + E2 − l2

R2 − 2rs( f + E2)

R
+ 2rsl2

R3 (A8)
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and

R̈ = rs( f + E2)

R2 + l2
(

1

R3 − 3rs

R4

)

(A9)

For a massive object ( f = −1):

R̈ = −(1 − E2)
rs

R2 + l2
(

1

R3 − 3rs

R4

)

(A10)

Compared with the EOM in Schwarzschild R̈ = − rs
2R2 +

l2
(

1
R3 − 3rs

2R4

)
, the only modification is the Newtonian

potential being “renormalized” by (1 − E2) and thus act-
ing like “repulsive” force if E2 > 1. It is worth mentioning
that this is a partial result of much wider conclusions drawn
in [70] for any k̃, among which the velocity-dependent accel-
eration for massive objects.
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